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Abstract

Background: In an emerging influenza pandemic, estimating severity (the probability of a severe outcome, such as
hospitalization, if infected) is a public health priority. As many influenza infections are subclinical, sero-surveillance is needed
to allow reliable real-time estimates of infection attack rate (IAR) and severity.

Methods and Findings: We tested 14,766 sera collected during the first wave of the 2009 pandemic in Hong Kong using
viral microneutralization. We estimated IAR and infection-hospitalization probability (IHP) from the serial cross-sectional
serologic data and hospitalization data. Had our serologic data been available weekly in real time, we would have obtained
reliable IHP estimates 1 wk after, 1–2 wk before, and 3 wk after epidemic peak for individuals aged 5–14 y, 15–29 y, and
30–59 y. The ratio of IAR to pre-existing seroprevalence, which decreased with age, was a major determinant for the
timeliness of reliable estimates. If we began sero-surveillance 3 wk after community transmission was confirmed, with 150,
350, and 500 specimens per week for individuals aged 5–14 y, 15–19 y, and 20–29 y, respectively, we would have obtained
reliable IHP estimates for these age groups 4 wk before the peak. For 30–59 y olds, even 800 specimens per week would
not have generated reliable estimates until the peak because the ratio of IAR to pre-existing seroprevalence for this age
group was low. The performance of serial cross-sectional sero-surveillance substantially deteriorates if test specificity is not
near 100% or pre-existing seroprevalence is not near zero. These potential limitations could be mitigated by choosing a
higher titer cutoff for seropositivity. If the epidemic doubling time is longer than 6 d, then serial cross-sectional sero-
surveillance with 300 specimens per week would yield reliable estimates when IAR reaches around 6%–10%.

Conclusions: Serial cross-sectional serologic data together with clinical surveillance data can allow reliable real-time
estimates of IAR and severity in an emerging pandemic. Sero-surveillance for pandemics should be considered.

Please see later in the article for the Editors’ Summary.
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Introduction

One of the lessons learned from the 2009 H1N1 influenza

(pdmH1N1) pandemic was the need for rapid and reliable

estimates of transmissibility and severity (the probability of severe

outcomes, such as hospitalization and death, if infected) of the

novel virus [1]. This is crucial for public health planning and for

effective communication with the public. Early efforts were

hampered by limited data [2], and while initial estimates of a

basic reproductive number in the range of 1.2–1.6 were consistent

with findings in other countries that were subsequently affected

[3–5], the initial estimate of case-fatality probability of 0.4% now

appears to be substantially overestimated [6,7].

In June 2009, we established a comprehensive serologic survey

of pdmH1N1 in Hong Kong. Facilitated by enhanced local

laboratory capacity developed since the 2003 epidemic of severe

acute respiratory syndrome, Hong Kong used extensive laboratory

testing for pdmH1N1 among all hospitalizations with respiratory

illness throughout the 2009 influenza pandemic. We previously

reported pdmH1N1 infection attack rate (IAR) and severity

estimates using only serologic data collected before and immedi-

ately after the first wave of the pandemic in Hong Kong [7]. A

companion study used paired sera collected from a cohort (1) to

estimate the IAR and severity profile of pdmH1N1 in Hong Kong

and (2) to show that specimens collected around the peak of an

epidemic from larger cohorts could have yielded more reliable

severity estimates [8]. In this paper, we used all available serial

cross-sectional serologic data to investigate how soon we would

have obtained reliable estimates of IAR and infection-hospitaliza-

tion probability (IHP) (the probability of hospitalization if infected)

if these serologic data were available weekly in real-time as the

epidemic unfolded. Having illustrated the principle of serial cross-

sectional sero-surveillance for pdmH1N1, we then conducted

extensive computer simulations to assess its expected performance

and logistical requirements in future pandemics.

This study was organized as follows. First, we described a

convolution-based method for real-time estimation of IAR and

IHP from clinical surveillance and serial cross-sectional serologic

data. The same method has been used to estimate incidence of

pdmH1N1 in England [9,10]. Next, we retrospectively applied this

method to our pdmH1N1 hospitalization and serologic data to

sequentially compute real-time estimates of IHP and IAR that

would have been obtained as the epidemic unfolded. We then

estimated the number of specimens that would have been required

in order to obtain reliable estimates of IHP and IAR 3–4 wk

before the epidemic peak. Finally, we conducted computer

simulations with hypothetical pandemic scenarios to analyze

how the performance of serial cross-sectional sero-surveillance

depends on the characteristics of serologic testing (sensitivity,

specificity, throughput, lead time, titer cutoff, pre-existing

seroprevalence) and epidemic dynamics (basic reproductive

number, generation time, natural history, antibody response

kinetics). Our goal was to provide operational guidelines for

implementing serial cross-sectional sero-surveillance in future

pandemics of influenza and other infectious diseases.

Methods

Clinical Surveillance Data
Age-stratified data on the daily number of virologically con-

firmed outpatient consultations, hospitalizations, intensive care

unit admissions, and deaths associated with pdmH1N1 from 29

April 2009 to 30 November 2009 were provided by the e-flu

database of the Hong Kong Hospital Authority [11,12]. Beginning

May 2009, patients admitted with acute respiratory illnesses

routinely underwent laboratory testing for pdmH1N1 virus, with

laboratory results available typically within 24 h and notification

to the central database typically within 1–2 d [7]. Local pdmH1N1

transmission was identified in mid-June, but containment efforts

enforced until 29 June 2009 required all laboratory-confirmed cases

to be hospitalized for isolation regardless of disease severity, and

therefore only surveillance data from 30 June 2009 onwards were

used in our analysis. In this study, we focused on estimating the IHP,

which was defined as the probability that an infected case (not

necessarily symptomatic) required hospitalization. In our earlier

publication [7], we called this quantity case-hospitalization rate.

Here, we revised the terminology to avoid confusion with the

probability of hospitalization if infected with symptoms (e.g., [6]).

We assumed that IHP was constant from 30 June 2009 onwards.

Seroprevalence Data
Between 12 June 2009 and 30 June 2010, we tested 13,328

serum samples from blood donors (aged 16–59 y), 3,613 from

hospital outpatients (aged 5–90 y), and 917 from participants of a

community pediatric cohort study (aged 5–14 y). Further descrip-

tion of the study design and preliminary analyses of a subset of

these sera collected before and immediately after the first wave of

pdmH1N1 can be found in [7] and Text S1. Sera were tested

for antibody responses to A/California/4/2009 (H1N1) by viral

microneutralization (MN). Our definition of MN titer in our

previous publication [7] and the current study is slightly different

from the latest World Health Organization (WHO) recom-

mendation published in 2011 [13]. We followed the previous

convention in which MN titers were denoted by taking into

account the final dilution resulting from mixing the serum dilution

with the virus. The latest WHO manual for laboratory diagnosis

recommends that the virus titer be denoted as the initial serum

dilution alone [13]. In effect, our MN titers in [7] and the current

study need to be halved when comparing them with those that

follow the latest recommendation (e.g., those in Veguilla et al.

[14], which we used to estimate the antibody response kinetics

parameters for the current study; see below and Text S1 for

details).

We defined pdmH1N1 seropositivity as an MN antibody titer of

$1:40 and pdmH1N1 seroprevalence as the proportion of

individuals who were seropositive. The age-specific seroprevalence

of the three groups of participants were largely similar across time

during the first wave (Figure S1). Estimates of IAR among

pdmH1N1 serology studies from different countries using different

sampling schemes have been quite similar [7,8,15,16]. To build a

model for illustrating the principle of serial cross-sectional sero-

surveillance, we aggregated the seroprevalence data from the three

groups of participants, though we acknowledge that such

aggregation is not generally well-justified in terms of representa-

tiveness. Specimens collected before 30 June 2009 were collec-

tively used to estimate the seroprevalence on 30 June 2009.

Serologic data between 30 June 2009 and 30 November 2009

were grouped into weekly batches, and the collection time of each

batch was set to be the average collection time of its constituents

(i.e., weighted by the number of samples each day). In summary,

serologic data used in this study comprised 14,766 samples

collected from 5–59 y olds before 30 November 2009.

A Convolution-Based Method for Real-Time Estimation of
IAR and Severity

We used a convolution-based method for obtaining real-time

estimates of IHP and IAR from serial cross-sectional serologic data

Estimating Severity of Pandemic Influenza
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and hospitalization data. The same method has been used to

estimate incidence of pdmH1N1 in England [9,10]. A schematic of

this method is shown in Figure 1. The method requires knowing

(1) the cumulative distribution function of the time from illness

onset to hospitalization FHosp, (2) the cumulative distribution

function of time from illness onset to seropositivity FSeropos, and (3)

the proportion of infections that eventually became seropositive, h.

In principle, all these should be directly observable from pandemic

surveillance. The basic algorithm of this method was as follows. At

any time t during the epidemic: (1) Use FHosp to deconvolute daily

hospitalizations h0,…,ht to obtain an unscaled incidence (daily

number of infections) curve a0,…,at [17]. If IHP is known, the true

incidence curve is estimated by dividing a0,…,at by IHP. This step

can be skipped if the actual onset dates of hospitalized cases are

known. (2) Use FSeropos to construct an estimated seroprevalence

curve b0,…,bt from the unscaled incidence curve a0,…,at:

bs~P0z
h

IHP

Xs

u~0

FSeropos(s{u)au, s~0,:::,t: ð1Þ

where P0 is the true pre-pandemic seroprevalence. (3) Fit the

estimated seroprevalence curve b0,…,bt to the serial cross-sectional

serologic data by finding the values of IHP and P0 that maximize

the following likelihood function:

L(IHP,P0)~P
i

Binomial xti
,nti

,bti

� �

~P
i

nti
!

xti
!(nti

{xti
)!

b
xti
ti

1{bti

� �nti
{xti

ð2Þ

where the product is over all times ti#t for which cross-sectional

serologic data are available, with each component being the

(binomial) probability of getting xti
seropositives from testing nti

samples collected at time ti if the true seroprevalence was bti
. IAR

can then be estimated by dividing the unscaled incidence curve by

our maximum likelihood estimate (MLE) of IHP.

In this basic algorithm, sensitivity and specificity of serologic

testing were assumed to be 100%. The method can be extended to

incorporate imperfect sensitivity and specificity, temporal variation

in IHP (e.g., weekend and seasonal effects) and different titer

cutoffs for seropositivity. See Text S1 for the generalized algo-

rithm that takes into account these factors. Note that sensitivity

(specificity) here referred to the probability that the result of the

serologic test was positive (negative) if the serum specimen was

truly seropositive (seronegative), regardless of whether seropositiv-

ity was due to pre-existing cross-reactive antibodies or antibodies

generated by recent pandemic infection. Therefore, our definitions

of sensitivity and specificity were different from that in recent

0 

0 

0 

0 

0 

1. Each infected case becomes seropositive 
    after recovery with probability  θ
2. The probability distribution of delay between 
    illness onset and seropositivity is  F Seropos 

1. Each infected case requires 
    hospitalization with probability IHP 
    (infection-hospitalization probability) 
2. The probability distribution of delay between 
    illness onset and hospitalization is  F Hosp 

0 

0 

incidence 

incidence 

hospitalization 

infection 
attack rate 

seroprevalence 

hospitalization 
unscaled 
incidence hospitalization 

unscaled 
incidence 

unscaled infection 
attack rate 

0 
unscaled 
seroprevalence 

0 

unscaled 
seroprevalence 

serial cross-sectional 
serologic data 

estimated 
incidence 

unscaled 
incidence 

A 

time 

time 

time 

B Step 1: Deconvolution 
Back-calculate unscaled incidence from hospitalization data using FHosp  

Step 2: Convolution 
Calculate unscaled seroprevalence from unscaled incidence using θ and FSeropos  

time time 

time time 

time time 

Step 3: Statistical inference of IHP 
   

   True seroprevalence = Pre-existing seroprevalence + 

Find the best value of IHP and pre-existing seroprevalence that fit sero-
prevalence curve to serial cross-sectional serologic data using maximum likelihood.
Divide unscaled incidence by the estimated IHP to obtain incidence. 

unscaled seroprevalence 
IHP 

Figure 1. A schematic of the convolution-based method for real-time estimation of IHP and IAR from hospitalization and serial
cross-sectional serologic data. (A) The hospitalization (top) and seroprevalence (bottom) curves are both delayed and scaled transformations of
the incidence curve (middle). (B) By performing the reverse transformations, we can use hospitalization and seroprevalence data to reconstruct
incidence and estimate IHP and IAR in real time.
doi:10.1371/journal.pmed.1001103.g001
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related publications on the performance of pdmH1N1 serologic

assays in which sensitivity was defined as the probability of a

positive serologic result among infected individuals and specificity

the probability of a negative serologic result among uninfected

individuals [14,18].

A Model for Retrospective Real-Time Estimation of
pdmH1N1 IHP and IAR

When retrospectively applying the convolution-based method

to our pdmH1N1 data, we made the following model

specifications. (1) IAR and IHP were estimated for the following

age groups for ease of comparison with our previous study [7]:

5–14, 15–19, 20–29, 30–39, and 40–59 y. (2) Sensitivity and

specificity were 100% for serologic testing for MN titer $1:40. (3)

Serologic results for each batch of specimens were available

3 d after the last sample of that batch was collected; ti in the

likelihood function of Step 3 in the basic algorithm was defined to

be the average collection time of the specimens contained in the

ith batch. (4) For simplicity, we ignored the delay between

infection and illness onset (around 1 d). Incorporating this delay

would essentially shift the estimated incidence curve to the left by

the length of the delay. (5) The upper-bound of age-specific IHP

at time t was the cumulative number of hospitalizations divided

by the cumulative number of confirmed cases up to time t for that

age group. Similarly, the lower-bound was the cumulative

number of hospitalizations divided by the size of that age group.

(6) The cumulative distribution function of the time from illness

onset to hospitalization FHosp was based on those hospitalized

cases whose onset dates were available in our clinical surveillance

data (Figure 2A). (7) The proportion of infected individuals who

eventually became seropositive h and the cumulative distribution

function of the time from illness onset to seropositivity FSeropos

were estimated using published data on the kinetics of antibody

response among laboratory-confirmed pdmH1N1 cases in the

United States [14]. To simplify our analysis, we assumed that

FSeropos was an Erlang-10 distribution with mean mSeropos and

constructed a likelihood LA(h, mSeropos) for these antibody

response data (results were almost identical when Erlang-5, -20,

or -40 was used instead; see Text S1 for details). The resulting

MLEs were h= 1 and mSeropos = 9.6 d. However, given the

modest sample size of this study, these estimates were associated

with significant uncertainty (Figure 2B and 2C). To incorporate

such uncertainty into our real-time estimates of IAR and IHP, we

modified the convolution-based method to estimate IHP, P0, h,

and FSeropos simultaneously by redefining the likelihood as the

product of L(IHP, P0) in Step 3 above and LA(h, mSeropos). Our

premise was that antibody response data of similar sample size

and precisions could have been obtained in real-time during the

early phase of the pandemic from serologic follow-up of the first

virologically confirmed cases [9]. We defined the full model as the

estimates of IHP, P0, h, and FSeropos obtained from the full set of

hospitalization and serial cross-sectional serologic data (i.e., up to

30 November 2009).

In this model, our IAR estimate would be accurate if and only

if our IHP estimate was accurate. As such, for conciseness, we

focus on the latter when presenting our results. When evaluating

the reliability of sequential real-time estimates of IHP, we used

the full model as the reference for comparison, i.e., we assumed

that the full model gave accurate estimates of the true IHP. In

this context, we regarded a real-time IHP estimate as reliable if

(1) its MLE did not differ from the MLE in the full model by

more than 50% and (2) its interquartile range (IQR) was less than

three times its MLE.

Serial Cross-Sectional Sero-Surveillance for Future
Pandemics

To assess the logistical requirements and expected performance

of serial cross-sectional sero-surveillance for future pandemics, we

first estimated the number of specimens that would have allowed

reliable estimates of IHP for pdmH1N1 by mid-August 2009 (4 wk

before the epidemic peak), assuming that the incidence and

seroprevalence curves in the full model were accurate. We

simulated 300 stochastic realizations of serial cross-sectional

sero-surveillance in which (1) m pre-pandemic specimens were

used to estimate seroprevalence on 30 June 2009 and (2) m

specimens were collected and tested every week starting in the

fourth week of July 2009 (3 wk after community transmission was

confirmed). Sequential real-time estimates of IHP were then

computed using the convolution-based method. We searched for

0

0.35 Age 5 to 14
n = 2129
mean = 2.1

0

0.35 Age 15 to 19
n = 571
mean = 2.2

0

0.35 Age 20 to 29
n = 475
mean = 2.4

0

0.35 Age 30 to 39
n = 269
mean = 2.7

0 5 10
0

0.35

Days

Age 40 to 59
n = 589
mean = 2.5

A                    B

               
      C

θ

Days

FSeropos mean
FSeropos std dev

0.9 1

0 5 10 15
 

 

Figure 2. Time delay from illness onset to hospitalization,
proportion of infected cases who reached seropositivity, and
time delay from illness onset to seropositivity. (A) Probability
density functions of the age-specific delay between illness onset and
hospitalization as observed in the e-flu database surveillance data. Black
bars indicate 95% confidence intervals. (B and C) Statistical analysis of
published data on the kinetics of pdmH1N1 antibody response among
laboratory-confirmed cases in the US [14]. Posterior distributions were
obtained using Markov chain Monte Carlo method with non-
informative priors (red lines); see Text S1 for details. (B) The posterior
distribution of the proportion of laboratory-confirmed cases who
eventually developed MN titer $1:40. (C) The posterior distributions of
the mean and standard deviation of the delay between illness onset
and seropositivity assuming that the delay distribution FSeropos was
Erlang-10.
doi:10.1371/journal.pmed.1001103.g002
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the smallest value of m for each age group that would yield reliable

estimates of IHP by mid-August.

Next, we conducted simulations with hypothetical epidemic

scenarios in order to analyze the general behavior of serial cross-

sectional sero-surveillance. We first considered susceptible-infect-

ed-removed epidemic dynamics with a basic reproductive number

of R0 = 1.4, mean generation time of Tg = 2.5 d, IHP = 0.5%, and

Erlang-3 probability distribution for the infectious duration with

mean 2Tgw/(1 + w) = 3.75 d, where w = 3 is the number of Erlang

stages [19,20]. We assumed that the probability distribution FHosp

was the same as that in our pdmH1N1 model (Figure 2A). We

assumed that 100 sera with collection times uniformly distributed

between 1 and 28 d after symptom onset were available for

estimating h and FSeropos (as in model specification number 7 for

pdmH1N1 above; see Text S1 for details). We simulated serial

cross-sectional sero-surveillance with 300 serum samples per week

starting 28 d after 50 infections were seeded in a population of 1

million. The 28 d of delay after seeding was meant to reflect the

time needed to develop a reliable serologic assay and to set up the

sero-surveillance operations. We simulated the following scenarios

to study the effect of sensitivity and specificity of serologic testing,

pre-existing seroprevalence, and alternative titer cutoff for

seropositivity: (A) 100% sensitivity, 100% specificity, no pre-

existing seroprevalence, h= 1, and FSeropos of Erlang-10 with mean

9.6 d (i.e., same as the MLEs for the US antibody response data);

(B) same as scenario A but with 80% sensitivity; (C) same as

scenario A but with 95% specificity; (D) same as scenario A but

with 5% pre-existing seroprevalence; (E) same as scenario A but

with a higher titer cutoff for seropositivity such that h= 0.6 and the

mean of FSeropos increased by 50%.

Finally, to investigate the dependence on epidemic dynamics,

we simulated serial cross-sectional sero-surveillance in 100

epidemic scenarios that were randomly generated using Latin-

hypercube sampling of the following parameter space: R0 between

1.2 and 2; Tg between 2 and 4 d; IHP between 0.1% and 3%; the

probability distribution of infectious duration Erlang-k, k = 1, …,5;

population size between 250,000 and 2.5 million; h between 0.6

and 1; and FSeropos gamma with mean between 6 and 16 d and

coefficient of variation (standard deviation divided by mean)

between 0.1 and 0.6. Both the mean and standard deviation of

FSeropos were included for statistical inference, i.e., this was a

relaxation of our previous Erlang-10 assumption for FSeropos.

For each of these epidemic scenarios, we compared the performance

of sero-surveillance under the following operational conditions: (1) sero-

surveillance begun 28 d after seeding, with 150, 300, and 450

specimens per week; (2) sero-surveillance begun 14, 28, and 42 d after

seeding, with 300 specimens per week.

Ethics Committee Approval
All study protocols were approved by the Institutional Review

Board of the University of Hong Kong/Hospital Authority Hong

Kong West Cluster.

Results

Seroprevalence, IHP, and Final IAR in the Full Model
The age-specific seroprevalence curves in the full model

provided a reasonably good fit to the serial cross-sectional

serologic data (Figure 3) except for the first 2 wk of September

for 5–14 y olds. For this period, seroprevalence in the full model

was substantially higher than the proportion of seropositive sera in

the data. This discrepancy was likely due to the small number of

serum specimens available in these 2 wk (17 and 26). Age-specific

IHP and final IAR in the full model were mostly similar to our

previous estimates, which were based on only pre- and post-first-

wave sera (Table 1). The largest discrepancy was that the final IAR

for 15–19 y olds in the full model was 9% higher than our previous

estimate. However, this was expected because of the inclusion of

outpatient sera in the full model but not in our previous estimates.

As noted in our previous study [7] and Text S1, the post-first-wave

seroprevalence of outpatients was substantially higher than that of

blood donors for this age group, hence the higher final IAR in the

full model.

Retrospective Sequential Real-Time Estimates of IHP and
IAR for pdmH1N1

Had our serologic data been available weekly in real time,

reliable estimates of IHP would have been available in early

October 2009 for 5–14 y olds, early September 2009 for 15–29 y

olds, and mid-October 2009 for 30–59 y olds (Figure 3). These

time points corresponded to 1 wk after, 1–2 wk before, and 3 wk

after the epidemic peak. For the 5–14 y olds, reliable estimate of

IHP would not have been available before the peak because the

number of serum specimens was small and collection of sera did

not begin until 3 wk before the peak for this age group. For the

30–59 y olds, reliable estimate of IHP would not have been

available until the first wave was almost over because the final IAR

was comparable in magnitude to the pre-existing seroprevalence

for this age group. That is, the signal-to-background ratio was

small, which required a larger number of sera (relative to the

average of 200–300 specimens per week in our study; see Figure 3)

in order to accurately detect the increase in seroprevalence

generated by pandemic infections (see below for further analysis

and discussions). The sequential real-time estimates of IHP

exhibited the following patterns: (1) the MLE zoomed to the

correct order of magnitude upon the first cross-section of serologic

data for which seroprevalence was apparently above pre-pandemic

level, and (2) the confidence intervals widened upon each cross-

section of serologic data for which seroprevalence was lower than

the most up-to-date estimate in the model, e.g., because of

statistical noise associated with sampling.

Had we begun weekly sero-surveillance in the fourth week of

July 2009, we would have needed around 150, 350, and 500

specimens per week for 5–14 y olds, 15–19 y olds, and 20–29 y

olds in order to obtain reliable estimates of IHP for these age

groups by mid-August 2009 (Figure S2). For the 30–59 y olds,

even a prohibitively large sample size of 800 per week would not

have provided reliable estimates of IHP until mid- to late

September 2009 because of the low ratio of IAR to pre-existing

seroprevalence for these age groups.

Serial Cross-Sectional Sero-Surveillance for Future
Pandemics

In the simulated base case (Figure 4, scenario A), serial cross-

sectional sero-surveillance with 300 specimens per week yielded

reliable estimates of IHP when the true seroprevalence was around

1%. With 100% of infected cases becoming seropositive 9.6 d after

illness onset on average (Figure 2B and 2C), IAR was around 6%

when seroprevalence was around 1%. This correspondence

between IAR and seroprevalence was robust across epidemic

model structure and parameter values (see Text S1 and Figure S3).

The performance of serial cross-sectional sero-surveillance was

largely unaffected even when the sensitivity of serologic testing was

only 80% (Figure 4, scenario B). However, the performance

substantially deteriorated if the specificity of serologic testing

dropped from 100% to 95% (Figure 4, scenario C) or pre-existing

seroprevalence increased from 0% to 5% (Figure 4, scenario D).

Estimating Severity of Pandemic Influenza

PLoS Medicine | www.plosmedicine.org 5 October 2011 | Volume 8 | Issue 10 | e1001103



Table 1. Comparison of the estimates of IHP and IAR in the full model with those from our previous study, which used only the
pre- and post-first-wave sera [7].

Age Group IHP IAR

Full Model Pre- and Post-First-Wave Sera [7] Full Model Pre- and Post-First-Wave Sera [7]

5–14 y 0.80% (0.73%–0.88%) 0.84% (0.76%–0.97%) 44.0% (40.8%–47.3%) 43.4% (37.9%–47.6%)

15–19 y 0.46% (0.37%–0.62%) 0.77% (0.53%–1.50%) 25.0% (19.7%–30.1%) 15.8% (8.2%–22.1%)

20–29 y 0.39% (0.32%–0.48%) 0.47% (0.37%–0.66%) 13.4% (11.3%–15.6%) 11.8% (8.4%–14.7%)

30–39 y 0.57% (0.39%–1.06%) 0.80% (0.45%–3.66%) 5.8% (3.6%–8.1%) 4.3% (0.9%–7.5%)

40–59 y 0.69% (0.48%–1.24%) 0.61% (0.38%–1.07%) 3.9% (2.5%–5.4%) 5.0% (2.7%–7.4%)

Full model results are MLE (95% confidence interval); pre- and post-first-wave sera results are posterior mode (95% credible interval).
doi:10.1371/journal.pmed.1001103.t001
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Figure 3. Hospitalization data, serial cross-sectional serologic data, and sequential real-time estimates of IHP and IAR for pdmH1N1
in Hong Kong. Each tick on the x-axis indicates the first day of the months July through December 2009. The first row shows the daily number of
hospitalizations (blue lines) and the number of serum specimens (light blue bars) tested before 30 June 2009 (left-most bar in each graph) and in
subsequent weeks. The second row shows the serial cross-sectional serologic data (blue circles indicate MLEs and bars indicate 95% confidence
intervals of seroprevalence in each cross-section) and the seroprevalence curves in the full model (green lines). The third and fourth rows show the
sequential real-time estimates of IHP and IAR, respectively (black circles for MLEs, black bars for 95% confidence intervals, and red boxes for IQRs).
Estimates were sequentially updated upon each new cross-section of serologic data. Each batch of serologic data was assumed to be available 3 d
after the last sample of that batch was collected.
doi:10.1371/journal.pmed.1001103.g003
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This was because reliable estimation of IHP was mainly limited by

how soon we could accurately detect an increase in seroprevalence

generated by pandemic infections. When this signal was weak (i.e.,

during the early pandemic stage), accurate detection would be

difficult when test specificity was low (i.e., with false positives

decreasing the signal-to-noise ratio) or when pre-existing sero-

prevalence was not close to zero (i.e., the signal-to-background

ratio was small). These limitations could be mitigated by increasing

the titer cutoff for seropositivity. For example, serologic follow-up

of 881 and 79 virologically confirmed pdmH1N1 cases in Hong

Kong and the US found that around 57% and 94% of cases

developed MN titer $1:80 [14,21]. With the seropositivity cutoff

set to MN titer 1:40 and 1:80, the pre-existing seroprevalence in

our serosurvey was 3%–5% and ,0.2%, respectively [7].

Increasing the cutoff for seropositivity at the expense of decreasing

the proportion of infected cases seropositive (h) from 1 to 0.6 and

increasing the mean delay from illness onset to seropositivity (the

mean of FSeropos) by 50% from 9.6 d to 14.5 d would only slightly

delay the timeliness of accurate estimates of IHP (Figure 4,

scenario E).

The performance of serial cross-sectional sero-surveillance

depended on epidemic dynamics mostly via the epidemic doubling

time (Figure 5). In general, if the epidemic doubling time was

longer than 6 d, serial cross-sectional sero-surveillance with 300

serum specimens per week provided accurate estimates of IHP

when h6IAR reached around 6%. In this range of doubling time,

the performance of sero-surveillance was largely similar when the

delay between the start of sero-surveillance and epidemic seeding

varied from 14 to 42 d. Given that the average delay from illness

onset to seropositivity was around 9.6 d, it would be impossible for

serial cross-sectional sero-surveillance to yield accurate estimates of

IHP during the nascent stage of the epidemic if the epidemic

doubling time was very short (Figure 5). The public health need for

early severity estimates to inform situational awareness and

pandemic response thus further highlights the importance of

aggressive mitigation measures to slow the spread of disease during

the early stages of a pandemic.

Discussion

Our results suggest that had our serial cross-sectional serologic

data been available weekly in real time during the 2009 influenza

pandemic, reliable estimates of IAR and IHP could have been

obtained 1 wk after, 1–2 wk before, and 3 wk after the epidemic

peak for 5–14 y olds, 15–29 y olds, and 30–59 y olds, respectively.

The ratio of IAR to pre-existing seroprevalence (the signal-to-

background ratio), which decreased with age for pdmH1N1 in

2009, was a major determinant of the timeliness of reliable

estimates. The 2009 pandemic provided a particular challenge

from the point of view of serologic interpretation because it was

caused by a virus subtype that was previously endemic in humans.

This led to the presence of serologic cross-reactivity and therefore

significant pre-existing seroprevalence at MN titer $1:40,

especially in the older age groups, hence the lack of timeliness of

reliable IHP estimates in our retrospective analysis. This would

have been much less of a problem with the pandemics of 1957

(H2N2) and 1968 (H3N2) or a future pandemic of H5N1. With

H9N2 viruses, the challenge posed by serologic cross-reactions

may be comparable to that with pdmH1N1 because a proportion

of individuals born before 1968 appear to have cross-reactive

antibodies [22]. Our results suggest that for serial cross-sectional

sero-surveillance to yield timely and accurate estimates of IAR and

severity, pre-existing seroprevalence needs be adjusted to near zero

by choosing a sufficiently high titer cutoff for seropositivity. Given

our limited serologic testing capacity, we only screened our

specimens at MN titers of $1:40 and $1:20, without determining
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doi:10.1371/journal.pmed.1001103.g004
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the exact antibody titer for each specimen. The performance of

serial cross-sectional sero-surveillance might be enhanced if exact

titers were available and incorporated into the real-time estimation

of IHP. If hemagglutination inhibition rather than the more labor

intensive MN tests were used (which may be feasible with some

pandemic viruses), the logistical feasibility and performance of

sero-surveillance may be further enhanced, although for pdmH1N1

the MN test was more sensitive and specific to confirmed infection

[23]. Automation of serologic assays may increase feasibility of

large-scale serology in the future.

The 2009 influenza pandemic highlighted the need for

improved methods of rapid, reliable assessment of transmissibility

and severity for an unfolding infectious disease outbreak. The

Fineberg et al. [24] report on the performance of WHO during the

pandemic highlighted the lack of ‘‘a consistent, measurable and

understandable depiction of severity’’ as one of the shortcomings

of the response in 2009, and called for proper timely assessment of

severity to guide public health response. Real-time transmission

modeling methods have previously been devised to estimate IAR

and severity based on clinical surveillance data without the use of

serologic data [25,26]. Their performance depends on the

reliability of the underlying transmission model, e.g., assumptions

and data regarding contact patterns between age groups, medical

consultation rates, and pre-existing immunity. In this study, we

showed that serial cross-sectional sero-surveillance could comple-

ment these methods to allow timely and accurate real-time

estimates of IAR and severity.

While the ideal sero-surveillance study would draw from a

random sample of the population of interest, in practice this is

unlikely to be feasible. In our study there was good agreement

between specimens collected from blood donors, hospital outpa-

tients, and community participants. A companion community-

based cohort study with paired serologic data in Hong Kong also

gave similar seroprevalence estimates [8]. Our study and other

similar serologic studies [16,27–29] have demonstrated that sero-

surveillance is feasible and that the resulting information could

provide invaluable data for accurate and timely estimation of

population attack rates and disease severity. However, sero-

surveillance does require substantial laboratory infrastructure and

resources, and during a pandemic there may be competing

concerns for laboratory services such as diagnostic testing and

vaccine development. As in our case, involvement of academic

research centers, which are less likely to be under pressure to

provide front-line diagnostic services, may provide a feasible

solution. The total cost of our serologic study was around 1% of

the amount that Hong Kong spent on purchasing pdmH1N1

vaccines, whereas the information provided by our study has been

instrumental in informing pandemic situational awareness and

decisions for prioritizing vaccine target groups in Hong Kong.

In addition to having a reliable serologic assay, serologic follow-

up of laboratory-confirmed cases needs to be conducted as early as

possible during a pandemic in order to collect acute- and

convalescence-phase sera for characterizing the kinetics of

antibody response against the pandemic virus (h and FSeropos)

[14]. Kinetics of antibody response may be strain-specific. For

example, Buchy et al. [30] analyzed 44 sera from 11 patients with

H5N1 disease and found that no neutralizing antibodies were

detected during the first week after disease onset, while 70% and

80% had MN titer $1:80 2 and 3 wk after disease onset. Togo

et al. [31] analyzed sera from seven individuals who were

experimentally challenged with the A2/Hong Kong strain

(WHO strain designation A2/University of Maryland/1/70) and

found that 0%, 57%, and 100% had neutralization titer $1:32 1,

2, and 3 wk after exposure [31]. Our study suggests that serologic

follow-up of around 100 cases for 28 d would be sufficient for

supporting sero-surveillance.

Our study has several limitations. First, our serologic specimens

were collected via convenience sampling of blood donors, hospital

outpatients, and vaccine trial participants. As such, our serologic

data did not necessarily provide a representative description of

pdmH1N1 seroprevalence in the general population. However,

our estimates of age-specific IARs were similar to those in a
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companion serologic study in Hong Kong that was based on

paired-sera from households recruited using random digit-dialing

of landlines [8]. Second, we assumed that the proportion of

pdmH1N1 cases that eventually developed MN titer $1:40 was

similar to that observed in serologic follow-up of virologically

confirmed cases who reported symptoms [14,21]. It is not known

whether asymptomatic cases were equally likely to develop MN

titer, so our estimates of IAR and IHP would need to be revised if

new data on this became available. Third, during a pandemic, the

reporting delay of clinical surveillance data and the laboratory

capacity available for serologic testing are subject to considerable

uncertainty. In our model, we assumed that these factors were not

the rate-limiting steps for serial cross-sectional sero-surveillance

(the number of specimens needed and pre-existing seroprevalence

were the primary limiting factors). Finally, we have considered

only the serial cross-sectional design for sero-surveillance. An

alternative design is cohort-based sero-surveillance, in which sera

from the same individuals are collected at various time points

during a pandemic, and IARs are inferred from seroconversion

rates (i.e., using paired serology) [8]. While the performance of the

latter design may have the advantage of being relatively insensitive

to pre-existing seroprevalence, it is not obvious how to optimally

time the collection of sera from the cohort for real-time

surveillance during a pandemic (because regular or frequent blood

sampling of the same individuals is unlikely to be feasible). We plan

to compare the serial cross-sectional design with the cohort-based

design in future studies.

In conclusion, we estimated that if the pre-existing seropreva-

lence could be adjusted to near zero with around h= 60%–100%

of infected cases reaching seropositivity 6–16 d after symptom

onset on average, then serial cross-sectional sero-surveillance with

about 300 specimens per week would allow reliable estimates of

IHP and IAR as soon as h6 IAR reached around 6% (Figure 5).

This level of testing capacity should be logistically feasible for most

developed countries if sero-surveillance is a formal part of

pandemic surveillance. Once an accurate estimate of IAR is

available, reliable estimates for other severity measures such as the

probability of intensive care unit admission or death given

infection can then be easily obtained. Once reliable severity

estimates have been obtained for a high-priority group, testing

capacity could then be allocated to other groups. Concentrated

efforts to gather such data from one of the major cities affected

early in the course of a pandemic would potentially yield data that

is of global relevance for public health. Such strategies would be

useful not only for situational awareness of influenza pandemics

but also for pandemics caused by other pathogens, e.g., a future

SARS-like event. As such, serologic surveillance should be

considered in updated plans for influenza pandemic preparedness

and response and for other pandemics.

Supporting Information

Figure S1 Age-specific proportions of individuals with
antibody titers $1:40 by viral MN in Hong Kong since
June 2009. Markers and vertical bars indicate the MLE and 95%

confidence intervals of weekly seroprevalence estimated using the

exact binomial method applied to weekly serologic data. Data

points with sample size ,10 are not shown. The seroprevalence

for 5–14 y olds in early June 2009 was estimated using blood

samples collected in April 2009 from the 5- to 14-y-old

participants of a pediatric cohort study.

(EPS)

Figure S2 The number of serum specimens that would
have been needed to yield reliable estimates of IHP by
mid-August during the 2009 influenza pandemic. The

estimate of IHP in the full model was assumed to be the true IHP

(Table 1). Each tick on the x-axis indicates the first day of the

month. Black circles indicate the median, while boxes and vertical

bars indicate the IQRs and 95% confidence intervals of the

ordinate.

(EPS)

Figure S3 The correspondence between h 6 IAR and
seroprevalence in 1,000 randomly generated epidemic
scenarios.
(EPS)

Text S1 Detailed study design and preliminary analy-
ses.
(DOC)
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Editors’ Summary

Background. Every winter, millions of people catch
influenza—a viral infection of the airways—and about half
a million die as a result. These seasonal epidemics occur
because small but frequent changes in the influenza virus
mean that the immune response produced by infection with
one year’s virus provides only partial protection against the
next year’s virus. Occasionally, however, a very different
influenza virus emerges to which people have virtually no
immunity. Such viruses can start global epidemics
(pandemics) and kill millions of people. The most recent
influenza pandemic began in March 2009 in Mexico, when
the first case of influenza caused by a new virus called
pandemic A/H1N1 2009 (pdmH1N1) occurred. The virus
spread rapidly despite strenuous efforts by national and
international public health agencies to contain it, and on 11
June 2009, the World Health Organization (WHO) declared
that an influenza pandemic was underway. By the time WHO
announced that the pandemic was over (10 August 2010),
pdmH1N1 had killed more than 18,000 people.

Why Was This Study Done? Early in the 2009 influenza
pandemic, as in any emerging pandemic, reliable estimates
of pdmH1N1’s transmissibility (how easily it spreads between
people) and severity (the proportion of infected people who
needed hospital treatment) were urgently needed to help
public health officials plan their response to the pandemic
and advise the public about the threat to their health.
Because infection with an influenza virus does not always
make people ill, the only way to determine the true size and
severity of an influenza outbreak is to monitor the
occurrence of antibodies (proteins made by the immune
system in response to infections) to the influenza virus in the
population—so-called serologic surveillance. In this study,
the researchers developed a method that uses serologic data
to provide real-time estimates of the infection attack rate
(IAR; the cumulative occurrence of new infections in a
population) and the infection-hospitalization probability
(IHP; the proportion of affected individuals that needs to
be hospitalized) during an influenza pandemic.

What Did the Researchers Do and Find? The researchers
tested nearly 15,000 serum samples collected in Hong Kong
during the first wave of the 2009 pandemic for antibodies to
pdmH1N1 and then used a mathematical approach called
convolution to estimate IAR and IHP from these serologic
data and hospitalization data. They report that if the
serological data had been available weekly in real time,
they would have been able to obtain reliable estimates of
IAR and IHP by one week after, one to two weeks before, and
three weeks after the pandemic peak for 5–14 year olds, 15–
29 year olds, and 30–59 year olds, respectively. If serologic
surveillance had begun three weeks after confirmation of
community transmission of pdmH1N1, sample sizes of 150,
350, and 500 specimens per week from 5–14 year olds, 15–19

year olds, and 20–29 year olds, respectively, would have
been sufficient to obtain reliable IAR and IHP estimates four
weeks before the pandemic peak. However, for 30–59 year
olds, even 800 specimens per week would not have
generated reliable estimates because of pre-existing
antibodies to an H1N1 virus in this age group. Finally,
computer simulations of future pandemics indicate that
serologic surveillance with 300 serum specimens per week
would yield reliable estimates of IAR and IHP as soon as the
true IAR reached about 6%.

What Do These Findings Mean? These findings suggest
that serologic data together with clinical surveillance data
could be used to provide reliable real-time estimates of IARs
and severity in an emerging influenza pandemic. Although
the number of samples needed to provide accurate
estimates of IAR and IHP in real life may vary somewhat
from those reported here because of limitations in the
design of this study, these findings nevertheless suggest that
the level of testing capacity needed to provide real-time
estimates of IAR and IHP during an emerging influenza
pandemic should be logistically feasible for most developed
countries. Moreover, collection of serologic surveillance data
from any major city affected early in an epidemic could
potentially provide information of global relevance for public
health. Thus, the researchers conclude, serologic monitoring
should be included in future plans for influenza pandemic
preparedness and response and in planning for other
pandemics.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001103.

N A recent PLoS Medicine Research Article by Riley et al.
provides further information on patterns of infection with
the pdmH1N1 virus

N The Hong Kong Centre for Health Protection provides
information on pandemic H1N1 influenza

N The US Centers for Disease Control and Prevention
provides information about influenza patients and profes-
sionals, including specific information on H1N1 influenza

N Flu.gov, a US government website, provides access to
information on seasonal, pandemic, and H1N1 influenza

N WHO provides information on seasonal influenza and has
information on the global response to H1N1 influenza (in
several languages)

N The UK Health Protection Agency provides information on
pandemic influenza and on H1N1 influenza

N More information for patients about H1N1 influenza is
available through Choices, an information resource pro-
vided by the UK National Health Service
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