Automated extraction and amplification for direct detection of Mycobacterium tuberculosis complex in various clinical samples.
Christine Simonnet, Vincent Lacoste, Anne Sophie Drogoul, Nalin Rastogi

To cite this version:

HAL Id: pasteur-00619820
https://hal-riip.archives-ouvertes.fr/pasteur-00619820
Submitted on 6 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Automated Extraction and Amplification for Direct Detection of *Mycobacterium tuberculosis* Complex in Various Clinical Samples

With the incidence of culture-positive tuberculosis (TB) cases at 25.3 per 100,000 and a 25% rate of TB/HIV coinfection, the TB incidence in French Guiana is the highest of all French regions (3, 5). In this context, there is an urgent need for simple, automated systems for molecular diagnosis of TB that can be adapted to small laboratories. Introduction of a molecular assay test in a routine clinical laboratory is an additional expense, and its cost-effectiveness and clinical utility need to be evaluated and seem to be optimized when used for diagnosis in patients with an intermediate-to-high likelihood of TB (8, 14).

With these objectives, our study aimed to evaluate a molecular assay developed for the detection of *Mycobacterium tuberculosis* complex (MTC) on the robotic workstation easyMAG/easyQ (EMEQ; bioMérieux, France), in comparison with culture, the gold standard. Following extraction based on the method described by Boom et al. (1), nucleic acid sequence-based amplification (NASBA) with real-time molecular beacon detection was performed on the extract (9, 12).

The specificity of the EMEQ assay was initially evaluated with 33 mycobacterial isolates (16 *M. tuberculosis*, 2 *Mycobacterium bovis*, and 15 nontuberculous mycobacterium isolates). Subsequently, detection of MTC was performed on request by specialized physicians during a 1-year prospective study of hospitalized patients (90 clinical specimens split into 25 respiratory and 65 nonrespiratory samples). Samples were processed for acid-fast bacillus (AFB) smear microscopy and cultured, and isolates were identified using biochemical tests in conjunction with restriction fragment length polymorphism of the *hsp65* gene (7) and the GenoType mycobacterium assay (Hain Lifescience GmbH, Germany).

A total of 52 specimens were culture positive, and 44 were identified as MTC and detected by EMEQ. The 8 remaining culture-positive specimens were atypical mycobacteria (6 *Mycobacterium avium* and 2 *Mycobacterium fortuitum* specimens) and found to be negative with EMEQ. No inhibition in the specimens included was detected. Out of 38 specimens that did not grow, 35 were found to be negative with EMEQ (Table 1). Analysis of culture-negative but EMEQ-positive samples resolved 2 out of 3 discrepancies, as follows: (i) for a gastric aspirate specimen, a second aspirate specimen received the same day cultured positive for *M. tuberculosis*, and (ii) for a urine specimen, another urinary specimen collected 1 month later cultured positive for *M. tuberculosis* using the Bectec MGIT 960 liquid culture system in another laboratory. Nonetheless, for the single remaining specimen of ascitic fluid, which tested positive by the EMEQ assay in 2 different runs, no further samples could be collected. The patient who provided the remaining specimen, whose ascites was first clinically labeled as being of pancreatic origin, remained “out of sight” despite subsequent calls for specimen collection.

In spite of the reported lack of sensitivity of molecular methods for nonrespiratory and paucibacillary specimens (2, 11, 13), the sensitivity in our study was 100% (Table 2); it was affected by neither the type of specimen nor the AFB counts (9 AFB-negative specimens were EMEQ positive). No false-negative result was observed. The specificity was 100% for laboratory isolates as well as respiratory clinical specimens and 97.1% for nonrespiratory specimens.

The negative predictive value (NPV) of a diagnostic test for tuberculosis is of great importance in deciding isolation release (6, 14), but predictive values have to be adjusted to the prevalence of the infection in the population tested (4). With a positive predictive value of 97.9% and a NPV of 100% (Table 2), EMEQ appears to be useful as a diagnostic test and to rule out TB in the group studied for intermediate-to-high clinical suspicion.

In addition, with 160 min needed for automatic extraction and amplification, incorporation of an internal control enabling the detection of samples inhibitors without duplicate testing of a seeded tube (10), and risk of contamination being minimized by amplification in closed tubes, the EMEQ assay seems to be a reliable method for use in routine clinical laboratories. These preliminary results will need to be confirmed by further studies.

TABLE 1. Results of AFB staining, culture, identification of MTC, and EMEQ for clinical specimens tested

<table>
<thead>
<tr>
<th>Type of specimen</th>
<th>No. of specimens</th>
<th>AFB staining</th>
<th>Culture</th>
<th>MTC identification</th>
<th>EMEQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputum</td>
<td>18</td>
<td>11</td>
<td>15</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Bronchoalveolar</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Lavage fluid</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bronchial aspirate</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nonrespiratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric aspirate</td>
<td>29</td>
<td>22</td>
<td>24</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Biopsy</td>
<td>15</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pleural fluid</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Urine</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Blood</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Abscess fluid</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nodule aspirate</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cerebrospinal fluid</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ascites</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Culture supernatant</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total: 90 45 52 44 47

a Before resolution of discrepancies.
We are grateful to colleagues at the local hospitals for collaboration, to S. Sophie (Institut Pasteur de la Guyane) for performing conventional and molecular MTC analysis, to M. Berchel and F. Prudente (Institut Pasteur de Guadeloupe) for performing mycobacterial identification, and to L. Northrup for editing.

This study was partially funded through grants by the Institut Pasteur International Network.

REFERENCES

Christine Simonnet*
Vincent Lacoste
Anne Sophie Drogoul
Institut Pasteur de la Guyane
LABM
23 Avenue Louis Pasteur
Cayenne, French Guiana

Nalin Rastogi
WHO Supranational TB Reference Laboratory
Unité de la Tuberculose et des Mycobactéries
Institut Pasteur de Guadeloupe
Abymes, Guadeloupe, France

*Phone: 594295807
Fax: 594309016
E-mail: csimonnet@pasteur-cayenne.fr

Published ahead of print on 16 February 2011.