A. M. Abdel-mawgoud, F. , and E. , Rhamnolipids: diversity of structures, microbial origins and roles, Applied Microbiology and Biotechnology, vol.74, issue.13, pp.1323-1336, 2010.
DOI : 10.1007/s00253-010-2498-2

URL : https://hal.archives-ouvertes.fr/pasteur-00819624

A. Abdel-mawgoud, R. Hausmann, F. M?-uller, M. , and E. , Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production, Biosurfactants ed. Sober on-Ch avez, pp.13-55, 2011.
DOI : 10.1007/978-3-642-14490-5_2

R. A. Al-tahhan, T. R. Sandrin, A. A. Bodour, and R. M. Maier, Rhamnolipid-Induced Removal of Lipopolysaccharide from Pseudomonas aeruginosa: Effect on Cell Surface Properties and Interaction with Hydrophobic Substrates, Applied and Environmental Microbiology, vol.66, issue.8, pp.3262-3268, 2000.
DOI : 10.1128/AEM.66.8.3262-3268.2000

I. M. Banat, R. S. Makkar, and S. S. Cameotra, Potential commercial applications of microbial surfactants, Applied Microbiology and Biotechnology, vol.53, issue.5, pp.495-508, 2000.
DOI : 10.1007/s002530051648

K. B. Barken, S. J. Pamp, L. Yang, M. Gjermansen, J. J. Bertrand et al., biofilms, Environmental Microbiology, vol.153, issue.9, pp.2331-2343, 2008.
DOI : 10.1111/j.1462-2920.2008.01658.x

S. Bergstr?-om, H. Theorell, and H. Davide, On a metabolic product of Ps. pyocyania. Pyolipic acid active against M. tuberculosis, Arkiv Kemi Mineral Geol, vol.8, pp.23-24, 1946.

B. R. Boles, M. Thoendel, and P. K. Singh, from biofilms, Molecular Microbiology, vol.60, issue.5, pp.1210-1223, 2005.
DOI : 10.1111/j.1365-2958.2005.04743.x

K. E. Boyle, S. Heilmann, D. Van-ditmarsch, and J. B. Xavier, Exploiting social evolution in biofilms, Current Opinion in Microbiology, vol.16, issue.2, pp.207-212, 2013.
DOI : 10.1016/j.mib.2013.01.003

N. C. Caiazza, R. M. Shanks, O. Toole, and G. A. , Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa, Journal of Bacteriology, vol.187, issue.21, pp.7351-7361, 2005.
DOI : 10.1128/JB.187.21.7351-7361.2005

?. Chrzanowski, ?. ?awniczak, and K. Czaczyk, Why do microorganisms produce rhamnolipids?, World Journal of Microbiology and Biotechnology, vol.61, issue.3, pp.401-419, 2012.
DOI : 10.1007/s11274-011-0854-8

M. E. Davey, O. Toole, and G. A. , Microbial Biofilms: from Ecology to Molecular Genetics, Microbiology and Molecular Biology Reviews, vol.64, issue.4, pp.847-867, 2000.
DOI : 10.1128/MMBR.64.4.847-867.2000

M. E. Davey, N. C. Caiazza, O. Toole, and G. A. , Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1, Journal of Bacteriology, vol.185, issue.3, pp.1027-1036, 2003.
DOI : 10.1128/JB.185.3.1027-1036.2003

D. G. Davies, M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton et al., The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm, Science, vol.280, issue.5361, pp.295-298, 1998.
DOI : 10.1126/science.280.5361.295

J. D. Desai and I. M. Banat, Microbial production of surfactants and their commercial potential, Microbiol Mol Biol Rev, vol.61, pp.47-64, 1997.

D. Eziel, E. , F. Dennie, D. Boismenu, D. Mamer et al., Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene, Biochim Biophys Acta, vol.1440, pp.244-252, 1999.

D. Eziel, E. , F. Milot, S. Villemur, and R. , Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP, Biochim Biophys Acta, vol.1485, pp.145-152, 2000.

D. Eziel, E. , F. Milot, S. Villemur, and R. , rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids, 2003.

R. M. Donlan, Preventing biofilms of clinically relevant organisms using bacteriophage, Trends in Microbiology, vol.17, issue.2, pp.66-72, 2009.
DOI : 10.1016/j.tim.2008.11.002

W. M. Dunne and . Jr, Bacterial Adhesion: Seen Any Good Biofilms Lately?, Clinical Microbiology Reviews, vol.15, issue.2, pp.155-166, 2002.
DOI : 10.1128/CMR.15.2.155-166.2002

D. H. Dusane, Y. V. Nancharaiah, S. S. Zinjarde, and V. P. Venugopalan, Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms, Colloids and Surfaces B: Biointerfaces, vol.81, issue.1, pp.242-248, 2010.
DOI : 10.1016/j.colsurfb.2010.07.013

D. H. Dusane, S. Dam, Y. V. Nancharaiah, A. R. Kumar, V. P. Venugopalan et al., Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant, Aquatic Biosystems, vol.8, issue.1, p.17, 2012.
DOI : 10.1111/j.1472-765X.2008.02440.x

H. C. Flemming and J. Wingender, The biofilm matrix, Nature Reviews Microbiology, vol.79, pp.623-633, 2010.
DOI : 10.1038/nrmicro2415

R. Glick, C. Gilmour, J. Tremblay, S. Satanower, O. Avidan et al., Increase in Rhamnolipid Synthesis under Iron-Limiting Conditions Influences Surface Motility and Biofilm Formation in Pseudomonas aeruginosa, Journal of Bacteriology, vol.192, issue.12, pp.2973-2980, 2010.
DOI : 10.1128/JB.01601-09

L. Hall-stoodley, J. W. Costerton, and P. Stoodley, Bacterial biofilms: from the Natural environment to infectious diseases, Nature Reviews Microbiology, vol.146, issue.2, pp.95-108, 2004.
DOI : 10.1016/S0167-7012(99)00097-4

D. C. Herman, Y. Zhang, and R. M. Miller, Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions, Appl Environ Microbiol, vol.63, pp.3622-3627, 1997.

K. Hisatsuka, T. Nakahara, N. Sano, and K. Yamada, Formation of Rhamnolipid by Pseudomonas aeruginosa and its Function in Hydrocarbon Fermentation, Agricultural and Biological Chemistry, vol.35, issue.5, 1971.
DOI : 10.1271/bbb1961.35.686

Y. Irie, G. A. O-'toole, and M. H. Yuk, biofilms, FEMS Microbiology Letters, vol.250, issue.2, pp.237-243, 2005.
DOI : 10.1016/j.femsle.2005.07.012

S. Itoh, H. Honda, F. Tomita, and T. Suzuki, Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C 12, C 13 and C 14 fractions), 1971.

P. Kanmani, R. Satish-kumar, N. Yuvaraj, K. A. Paari, V. Pattukumar et al., Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro, Bioresource Technology, vol.102, issue.7, pp.4827-4833, 2011.
DOI : 10.1016/j.biortech.2010.12.118

J. B. Kaplan, Biofilm Dispersal: Mechanisms, Clinical Implications, and Potential Therapeutic Uses, Journal of Dental Research, vol.89, issue.3, pp.205-218, 2010.
DOI : 10.1177/0022034509359403

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318030

D. B. Kearns, A field guide to bacterial swarming motility, Nature Reviews Microbiology, vol.33, issue.9, pp.634-644, 2010.
DOI : 10.1038/nrmicro2405

M. Klausen, A. Aaes-jorgensen, S. Molin, and T. Tolker-nielsen, Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms, Molecular Microbiology, vol.22, issue.1, pp.61-68, 2003.
DOI : 10.1046/j.1365-2958.2003.03677.x

M. Klausen, A. Heydorn, P. Ragas, L. Lambertsen, A. Aaes-jorgensen et al., Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants, Molecular Microbiology, vol.413, issue.6, pp.1511-1524, 2003.
DOI : 10.1046/j.1365-2958.2003.03525.x

I. Kuiper, E. L. Lagendijk, R. Pickford, J. P. Derrick, G. E. Lamers et al., Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms, Molecular Microbiology, vol.60, issue.1, pp.97-113, 2004.
DOI : 10.1046/j.1365-2958.2003.03751.x

Y. Lequette and E. P. Greenberg, Timing and Localization of Rhamnolipid Synthesis Gene Expression in Pseudomonas aeruginosa Biofilms, Journal of Bacteriology, vol.187, issue.1, pp.37-44, 2005.
DOI : 10.1128/JB.187.1.37-44.2005

D. Mcdougald, S. A. Rice, N. Barraud, P. D. Steinberg, and S. Kjelleberg, Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal, Nature Reviews Microbiology, vol.13, pp.39-50, 2012.
DOI : 10.1038/nrmicro2695

G. Medina, K. Juarez, and G. Soberon-chavez, The Pseudomonas aeruginosa rhlAB Operon Is Not Expressed during the Logarithmic Phase of Growth Even in the Presence of Its Activator RhlR and the Autoinducer N-Butyryl-Homoserine Lactone, Journal of Bacteriology, vol.185, issue.1, pp.377-380, 2003.
DOI : 10.1128/JB.185.1.377-380.2003

J. R. Mireles, A. Toguchi, and R. M. Harshey, Salmonella enterica Serovar Typhimurium Swarming Mutants with Altered Biofilm-Forming Abilities: Surfactin Inhibits Biofilm Formation, Journal of Bacteriology, vol.183, issue.20, pp.5848-5854, 2001.
DOI : 10.1128/JB.183.20.5848-5854.2001

U. A. Ochsner and J. Reiser, Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa., Proceedings of the National Academy of Sciences, vol.92, issue.14, pp.6424-6428, 1995.
DOI : 10.1073/pnas.92.14.6424

U. A. Ochsner, A. Fiechter, and J. Reiser, Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis, J Biol Chem, vol.269, 1994.

U. A. Ochsner, A. K. Koch, A. Fiechter, and J. Reiser, Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa., Journal of Bacteriology, vol.176, issue.7, pp.2044-2054, 1994.
DOI : 10.1128/jb.176.7.2044-2054.1994

O. 'toole, G. A. Kolter, and R. , biofilm development, Molecular Microbiology, vol.18, issue.2, pp.295-304, 1998.
DOI : 10.1046/j.1365-2958.1998.01062.x

O. 'toole, G. Kaplan, H. B. Kolter, and R. , Biofilm Formation as Microbial Development, Annual Review of Microbiology, vol.54, issue.1, pp.49-79, 2000.
DOI : 10.1146/annurev.micro.54.1.49

J. Palmer, S. Flint, and J. Brooks, Bacterial cell attachment, the beginning of a biofilm, Journal of Industrial Microbiology & Biotechnology, vol.44, issue.C4, pp.577-588, 2007.
DOI : 10.1007/s10295-007-0234-4

S. J. Pamp and T. Tolker-nielsen, Multiple Roles of Biosurfactants in Structural Biofilm Development by Pseudomonas aeruginosa, Journal of Bacteriology, vol.189, issue.6, pp.2531-2539, 2007.
DOI : 10.1128/JB.01515-06

J. D. Partridge and R. M. Harshey, Swarming: Flexible Roaming Plans, Journal of Bacteriology, vol.195, issue.5, pp.909-918, 2013.
DOI : 10.1128/JB.02063-12

G. M. Patriquin, E. Banin, C. Gilmour, R. Tuchman, E. P. Greenberg et al., Influence of Quorum Sensing and Iron on Twitching Motility and Biofilm Formation in Pseudomonas aeruginosa, Journal of Bacteriology, vol.190, issue.2, pp.662-671, 2008.
DOI : 10.1128/JB.01473-07

A. Raya, M. Sodagari, N. M. Pinzon, X. He, B. M. Zhang-newby et al., Effects of rhamnolipids and shear on Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens, Letters in Applied Microbiology The Society for Applied Appl Microbiol Biotechnol, vol.58, issue.83, pp.447-453, 2009.

L. Rodrigues, H. Van-der-mei, I. M. Banat, J. Teixeira, and R. Oliveira, A, FEMS Immunology & Medical Microbiology, vol.46, issue.1, pp.107-112, 2006.
DOI : 10.1111/j.1574-695X.2005.00006.x

URL : https://hal.archives-ouvertes.fr/hal-00573580

L. R. Rodrigues, I. M. Banat, H. C. Van-der-mei, J. A. Teixeira, and R. Oliveira, Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants, Journal of Applied Microbiology, vol.72, issue.3, pp.470-480, 2006.
DOI : 10.1016/S0167-7012(00)00122-6

D. Romero and R. Kolter, Will biofilm disassembly agents make it to market?, Trends in Microbiology, vol.19, issue.7, pp.304-306, 2011.
DOI : 10.1016/j.tim.2011.03.003

E. Z. Ron and E. Rosenberg, Natural roles of biosurfactants. Minireview, Environmental Microbiology, vol.25, issue.4, pp.229-236, 2001.
DOI : 10.1016/S1388-1981(99)00058-X

S. R. Schooling, U. K. Charaf, D. G. Allison, and P. Gilbert, A role for rhamnolipid in biofilm dispersion, Biofilms, vol.1, issue.2, pp.91-99, 2004.
DOI : 10.1017/S147905050400119X

J. A. Shapiro, THINKING ABOUT BACTERIAL POPULATIONS AS MULTICELLULAR ORGANISMS, Annual Review of Microbiology, vol.52, issue.1, pp.81-104, 1998.
DOI : 10.1146/annurev.micro.52.1.81

G. Sierra, Hemolytic effect of a glycolipid produced byPseudomonas aeruginosa, Antonie van Leeuwenhoek, vol.26, issue.1, pp.189-192, 1960.
DOI : 10.1007/BF02539004

N. Singh, S. C. Pemmaraju, P. A. Pruthi, S. S. Cameotra, and V. Pruthi, Candida Biofilm Disrupting Ability of Di-rhamnolipid (RL-2) Produced from Pseudomonas aeruginosa DSVP20, Applied Biochemistry and Biotechnology, vol.54, issue.8, pp.2374-2391, 2013.
DOI : 10.1007/s12010-013-0149-7

M. Sodagari, H. Wang, B. M. Newby, and L. K. Ju, Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass, Colloids and Surfaces B: Biointerfaces, vol.103, pp.121-128, 2013.
DOI : 10.1016/j.colsurfb.2012.10.004

J. Tremblay, A. P. Richardson, F. Lepine, and E. Deziel, Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour, Environmental Microbiology, vol.4, issue.10, pp.2622-2630, 2007.
DOI : 10.1016/0378-1119(94)90237-2

M. Van-gennip, L. D. Christensen, M. Alhede, R. Phipps, P. O. Jensen et al., Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes, APMIS, vol.189, issue.7, pp.537-546, 2009.
DOI : 10.1111/j.1600-0463.2009.02466.x

E. Walencka, S. Rozalska, B. Sadowska, and B. Rozalska, The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation, Folia Microbiologica, vol.51, issue.1, pp.61-66, 2008.
DOI : 10.1007/s12223-008-0009-y

J. Wang, B. Yu, D. Tian, and M. Ni, Rhamnolipid but not motility is associated with the initiation of biofilm seeding dispersal of Pseudomonas aeruginosa strain PA17, Journal of Biosciences, vol.148, issue.1, 2013.
DOI : 10.1007/s12038-012-9297-0

Y. Zhang and R. M. Miller, Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane, Appl Environ Microbiol, vol.60, pp.2101-2106, 1994.