D. S. Friedman, B. J. O-'colmain, B. Muñoz, S. C. Tomany, C. Mccarty et al., Prevalence of age-related macular degeneration in the United States, Eye Diseases Prevalence Research Group. Arch. Ophthalmol. Chic. Ill, vol.122, pp.564-572, 1960.

J. H. Kempen, B. J. O-'colmain, M. C. Leske, S. M. Haffner, R. Klein et al., The prevalence of diabetic retinopathy among adults in the United States, Eye Diseases Prevalence Research Group. Arch. Ophthalmol. Chic. Ill, vol.122, pp.552-563, 1960.

R. Klein, T. Peto, A. Bird, and M. R. Vannewkirk, The epidemiology of age-related macular degeneration, American Journal of Ophthalmology, vol.137, issue.3, pp.486-495, 2004.
DOI : 10.1016/j.ajo.2003.11.069

D. 'amore and P. A. , Mechanisms of retinal and choroidal neovascularization, Invest. Ophthalmol. Vis. Sci, vol.35, pp.3974-3979, 1994.

D. M. Brown, P. K. Kaiser, M. Michels, G. Soubrane, J. S. Heier et al., Ranibizumab versus Verteporfin for Neovascular Age-Related Macular Degeneration, New England Journal of Medicine, vol.355, issue.14, pp.1432-1444, 2006.
DOI : 10.1056/NEJMoa062655

P. J. Rosenfeld, D. M. Brown, J. S. Heier, D. S. Boyer, P. K. Kaiser et al., Ranibizumab for Neovascular Age-Related Macular Degeneration, New England Journal of Medicine, vol.355, issue.14, pp.1419-1431, 2006.
DOI : 10.1056/NEJMoa054481

F. Forooghian, C. Cukras, C. B. Meyerle, E. Y. Chew, and W. T. Wong, TACHYPHYLAXIS AFTER INTRAVITREAL BEVACIZUMAB FOR EXUDATIVE AGE-RELATED MACULAR DEGENERATION, Retina, vol.29, issue.6, pp.723-731, 2009.
DOI : 10.1097/IAE.0b013e3181a2c1c3

M. S. Eghøj and T. L. Sørensen, Tachyphylaxis during treatment of exudative age-related macular degeneration with ranibizumab, British Journal of Ophthalmology, vol.96, issue.1, pp.21-23, 2012.
DOI : 10.1136/bjo.2011.203893

M. J. Martinez-zapata, A. J. Martí-carvajal, I. Solà, J. I. Pijoán, J. A. Buil-calvo et al., Anti-vascular endothelial growth factor for proliferative diabetic retinopathy The role of extracellular matrix in retinal vascular development and preretinal neovascularization, J. R. Cochrane Database Syst. Rev. Exp. Eye Res, vol.11, issue.133, pp.30-36, 2014.

P. C. Brooks, A. M. Montgomery, M. Rosenfeld, R. A. Reisfeld, T. Hu et al., Integrin ??v??3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels, Cell, vol.79, issue.7, pp.1157-1164, 1994.
DOI : 10.1016/0092-8674(94)90007-8

M. Friedlander, P. C. Brooks, R. W. Shaffer, C. M. Kincaid, J. A. Varner et al., Definition of Two Angiogenic Pathways by Distinct alpha(v) Integrins, Science, vol.270, issue.5241, pp.1500-1502, 1995.
DOI : 10.1126/science.270.5241.1500

S. G. Robbins, R. B. Brem, D. J. Wilson, L. M. O-'rourke, J. E. Robertson et al., Immunolocalization of integrins in proliferative retinal membranes, Invest. Ophthalmol. Vis. Sci, vol.35, pp.3475-3485, 1994.

M. Friedlander, C. L. Theesfeld, M. Sugita, M. Fruttiger, M. A. Thomas et al., Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases., Proceedings of the National Academy of Sciences, vol.93, issue.18, pp.9764-9769, 1996.
DOI : 10.1073/pnas.93.18.9764

S. L. Goodman and M. Picard, Integrins as therapeutic targets, Trends in Pharmacological Sciences, vol.33, issue.7, pp.405-412, 2012.
DOI : 10.1016/j.tips.2012.04.002

N. Umeda, S. Kachi, H. Akiyama, G. Zahn, D. Vossmeyer et al., Suppression and Regression of Choroidal Neovascularization by Systemic Administration of an ??5beta1 Integrin Antagonist, Molecular Pharmacology, vol.69, issue.6, pp.1820-1828, 2006.
DOI : 10.1124/mol.105.020941

Y. Fu, M. L. Ponce, M. Thill, P. Yuan, N. S. Wang et al., Angiogenesis Inhibition and Choroidal Neovascularization Suppression by Sustained Delivery of an Integrin Antagonist, EMD478761, Investigative Opthalmology & Visual Science, vol.48, issue.11, pp.5184-5190, 2007.
DOI : 10.1167/iovs.07-0469

G. Zahn, D. Vossmeyer, R. Stragies, M. Wills, C. G. Wong et al., Preclinical Evaluation of the Novel Small-Molecule Integrin ??5??1 Inhibitor JSM6427 in Monkey and Rabbit Models of Choroidal Neovascularization, Archives of Ophthalmology, vol.127, issue.10, pp.1329-1335, 1960.
DOI : 10.1001/archophthalmol.2009.265

S. Honda, T. Nagai, and A. Negi, Anti-angiogenic effects of non-peptide integrin ??v??3 specific antagonist on laser-induced choroidal neovascularization in mice, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.278, issue.24, pp.515-522, 2009.
DOI : 10.1007/s00417-008-1010-5

H. Salehi-had, M. I. Roh, A. Giani, T. Hisatomi, S. Nakao et al., Utilizing Targeted Gene Therapy with Nanoparticles Binding Alpha v Beta 3 for Imaging and Treating Choroidal Neovascularization, PLoS ONE, vol.43, issue.6, 2011.
DOI : 10.1371/journal.pone.0018864.t001

S. Sarray, N. Srairi, M. Hatmi, J. Luis, H. Louzir et al., Lebecetin, a potent antiplatelet C-type lectin from Macrovipera lebetina venom, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1651, issue.1-2, pp.30-40, 2003.
DOI : 10.1016/S1570-9639(03)00232-2

S. Sarray, E. Delamarre, J. Marvaldi, M. Ayeb, N. Marrakchi et al., Lebectin and lebecetin, two C-type lectins from snake venom, inhibit ??5??1 and ??v-containing integrins, Matrix Biology, vol.26, issue.4, pp.306-313, 2007.
DOI : 10.1016/j.matbio.2007.01.001

A. Pilorget, M. Conesa, S. Sarray, J. Michaud-levesque, S. Daoud et al., Lebectin, aMacrovipera lebetina venom-derived C-type lectin, inhibits angiogenesis both in vitro and in vivo, Journal of Cellular Physiology, vol.53, issue.2, pp.307-315, 2007.
DOI : 10.1002/jcp.20935

S. Lavalette, W. Raoul, M. Houssier, S. Camelo, O. Levy et al., Interleukin-1?? Inhibition Prevents Choroidal Neovascularization and Does Not Exacerbate Photoreceptor Degeneration, The American Journal of Pathology, vol.178, issue.5, pp.2416-2423, 2011.
DOI : 10.1016/j.ajpath.2011.01.013

URL : https://hal.archives-ouvertes.fr/inserm-00690746

Z. Shao, M. Friedlander, C. G. Hurst, Z. Cui, D. T. Pei et al., Choroid Sprouting Assay: An Ex Vivo Model of Microvascular Angiogenesis Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization Fiji: an open-source platform for biological-image analysis, PLoS One PLoS One Nat. Methods, vol.8, issue.9, pp.676-682, 2012.

A. Berger, S. Cavallero, E. Dominguez, P. Barbe, M. Simonutti et al., Spectral-Domain Optical Coherence Tomography of the Rodent Eye: Highlighting Layers of the Outer Retina Using Signal Averaging and Comparison with Histology Quantification of oxygeninduced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis, PLoS One Nat. Protoc, vol.9, issue.4, pp.1565-1573, 2009.

S. Remtulla and P. E. Hallett, A schematic eye for the mouse, and comparisons with the rat, Vision Research, vol.25, issue.1, pp.21-31, 1985.
DOI : 10.1016/0042-6989(85)90076-8

T. Nakajima, M. Hirata, T. R. Shearer, and M. Azuma, Mechanism for laserinduced neovascularization in rat choroid: Accumulation of integrin ? chain-positive cells and their ligands, Mol. Vis, vol.20, pp.864-871, 2014.

P. Launay, E. Reboussin, H. Liang, K. Kessal, D. Godefroy et al., Ocular inflammation induces trigeminal pain, peripheral and central neuroinflammatory mechanisms, Neurobiology of Disease, vol.88, pp.16-28, 2016.
DOI : 10.1016/j.nbd.2015.12.017

URL : https://hal.archives-ouvertes.fr/hal-01258703

H. Tsujino, E. Kondo, T. Fukuoka, Y. Dai, A. Tokunaga et al., Activating Transcription Factor 3 (ATF3) Induction by Axotomy in Sensory and Motoneurons: A Novel Neuronal Marker of Nerve Injury, Molecular and Cellular Neuroscience, vol.15, issue.2, pp.170-182, 2000.
DOI : 10.1006/mcne.1999.0814

J. L. Kovach, S. G. Schwartz, H. W. Flynn, and I. U. Scott, Anti-VEGF Treatment Strategies for Wet AMD, Journal of Ophthalmology, vol.89, issue.7, p.2012, 2012.
DOI : 10.1016/j.ophtha.2007.09.008

URL : http://doi.org/10.1155/2012/786870

A. Yancopoulos, G. D. Stahl, N. Wiegand, and S. J. , Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab, Angiogenesis, vol.15, pp.171-185, 2012.

V. Lambert, J. Lecomte, S. Hansen, S. Blacher, M. A. Gonzalez et al., Laserinduced choroidal neovascularization model to study age-related macular degeneration in mice Oxygen-induced retinopathy in the mouse, Nat. Protoc. Invest. Ophthalmol. Vis. Sci, vol.8, issue.35, pp.2197-2211, 1994.

A. Stahl, K. M. Connor, P. Sapieha, K. L. Willett, N. M. Krah et al., Computer-aided quantification of retinal neovascularization, Angiogenesis, vol.106, issue.21, pp.297-301, 2009.
DOI : 10.1007/s10456-009-9155-3

C. C. Tokunaga, K. P. Mitton, W. Dailey, C. Massoll, K. Roumayah et al., Effects of Anti-VEGF Treatment on the Recovery of the Developing Retina Following Oxygen-Induced Retinopathy, Investigative Opthalmology & Visual Science, vol.55, issue.3, pp.1884-1892, 2014.
DOI : 10.1167/iovs.13-13397

G. C. Alghisi and C. Rüegg, Vascular Integrins in Tumor Angiogenesis: Mediators and Therapeutic Targets, Endothelium, vol.129, issue.2, pp.113-135, 2006.
DOI : 10.1006/dbio.2001.0391

D. F. Legler, M. A. Doucey, J. C. Cerottini, C. Bron, and I. F. Luescher, Selective inhibition of CTL activation by a dipalmitoyl-phospholipid that prevents the recruitment of signaling molecules to lipid rafts, The FASEB Journal, vol.15, pp.1601-1603, 2001.
DOI : 10.1096/fj.00-0841fje

A. R. Reynolds, I. R. Hart, A. R. Watson, J. C. Welti, R. G. Silva et al., Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors, Nature Medicine, vol.92, issue.4, pp.392-400, 2009.
DOI : 10.1038/nm.1941

S. Kim, M. Bakre, H. Yin, and J. A. Varner, Inhibition of endothelial cell survival and angiogenesis by protein kinase A, Journal of Clinical Investigation, vol.110, issue.7, pp.933-941, 2002.
DOI : 10.1172/JCI0214268

S. Kim, K. Bell, S. A. Mousa, and J. A. Varner, Regulation of Angiogenesis in Vivo by Ligation of Integrin ??5??1 with the Central Cell-Binding Domain of Fibronectin, The American Journal of Pathology, vol.156, issue.4, pp.1345-1362, 2000.
DOI : 10.1016/S0002-9440(10)65005-5

. Vasculogenesis, Angiogenesis, and Organogenesis Precede Lethality in Mice Lacking All ?v Integrins, Cell, vol.95, pp.507-519

A. Buffo, C. Rolando, C. , and S. , Astrocytes in the damaged brain: Molecular and cellular insights into their reactive response and healing potential, Biochemical Pharmacology, vol.79, issue.2, pp.77-89, 2010.
DOI : 10.1016/j.bcp.2009.09.014

URL : https://hal.archives-ouvertes.fr/hal-00535828

M. Wang, W. Ma, L. Zhao, R. N. Fariss, and W. T. Wong, Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina Microglia activation in retinal degeneration, J. Neuroinflammation Langmann, T. J. Leukoc. Biol, vol.8, issue.81, pp.1345-1351, 2007.

O. Strauss, The Retinal Pigment Epithelium in Visual Function, Physiological Reviews, vol.85, issue.3, pp.845-881, 2005.
DOI : 10.1152/physrev.00021.2004

H. Takagi, K. Suzuma, A. Otani, H. Oh, S. Koyama et al., Role of Vitronectin Receptor-Type Integrins and Osteopontin in Ischemia-Induced Retinal Neovascularization, Japanese Journal of Ophthalmology, vol.46, issue.3, pp.270-278, 2002.
DOI : 10.1016/S0021-5155(02)00482-3

E. Chavakis, B. Riecke, J. Lin, T. Linn, R. G. Bretzel et al., Kinetics of integrin expression in the mouse model of proliferative retinopathy and success of secondary intervention with cyclic RGD peptides, Diabetologia, vol.45, issue.2, pp.262-267, 2002.
DOI : 10.1007/s00125-001-0727-z

B. Willette, R. N. Kumar, S. , G. , and R. E. , SB-267268, a nonpeptidic antagonist of alpha(v)beta3 and alpha(v)beta5 integrins, reduces angiogenesis and VEGF expression in a mouse model of retinopathy of prematurity, Invest. Ophthalmol. Vis. Sci, vol.47, pp.1600-1605, 2006.

R. J. Santulli, W. A. Kinney, S. Ghosh, B. L. Decorte, L. Liu et al., Studies with an Orally Bioavailable ??V Integrin Antagonist in Animal Models of Ocular Vasculopathy: Retinal Neovascularization in Mice and Retinal Vascular Permeability in Diabetic Rats, Journal of Pharmacology and Experimental Therapeutics, vol.324, issue.3, pp.894-901, 2008.
DOI : 10.1124/jpet.107.131656

. ?l, 500 µM) at D2, n= 5 eyes per group. INL: inner nuclear layer, ONL: outer nuclear layer, Scale bars in A= 50 µm, B=100 µm