S. Reed, Leishmania vaccine development: exploiting the host???vector???parasite interface, Expert Review of Vaccines, vol.5, issue.5, pp.81-90, 2016.
DOI : 10.1111/1469-0691.12421

J. Alvar, S. Yactayo, and C. Bern, Leishmaniasis and poverty, Trends in Parasitology, vol.22, issue.12, pp.552-557, 2006.
DOI : 10.1016/j.pt.2006.09.004

C. Mathers, M. Ezzati, and A. Lopez, Measuring the Burden of Neglected Tropical Diseases: The Global Burden of Disease Framework, PLoS Neglected Tropical Diseases, vol.103, issue.2, p.114, 2007.
DOI : 10.1371/journal.pntd.0000114.s001

D. Marinho, Health Economic Evaluations of Visceral Leishmaniasis Treatments: A Systematic Review, PLOS Neglected Tropical Diseases, vol.2, issue.Suppl 2, p.3527, 2015.
DOI : 10.1371/journal.pntd.0003527.s002

M. Hartley, The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis, Trends in Parasitology, vol.30, issue.8, pp.412-422, 2014.
DOI : 10.1016/j.pt.2014.05.006

J. Alvar, Leishmaniasis Worldwide and Global Estimates of Its Incidence, PLoS ONE, vol.83, issue.30, p.35671, 2012.
DOI : 10.1371/journal.pone.0035671.s101

R. Kumar and C. Engwerda, Vaccines to prevent leishmaniasis, Clinical & Translational Immunology, vol.174, issue.3, p.13, 2014.
DOI : 10.1128/IAI.73.2.812-819.2005

URL : https://doi.org/10.1038/cti.2014.4

F. Modabber, Leishmaniasis vaccines: past, present and future, International Journal of Antimicrobial Agents, vol.36, pp.58-61, 2010.
DOI : 10.1016/j.ijantimicag.2010.06.024

L. Assis, analysis, Parasite Immunology, vol.5, issue.7, pp.313-323, 2014.
DOI : 10.1371/journal.pntd.0001310

URL : https://hal.archives-ouvertes.fr/hal-01523953

L. John, G. John, and T. Kholia, A Reverse Vaccinology Approach for the Identification of Potential Vaccine Candidates from Leishmania spp, Applied Biochemistry and Biotechnology, vol.4, issue.6, pp.1340-1350, 2012.
DOI : 10.2174/1566524043360113

D. Resende, An assessment on epitope prediction methods for protozoa genomes, BMC Bioinformatics, vol.13, issue.1, p.309, 2012.
DOI : 10.1093/bioinformatics/bti623

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-13-309?site=bmcbioinformatics.biomedcentral.com

F. Azmi, Recent progress in adjuvant discovery for peptide-based subunit vaccines, Human Vaccines & Immunotherapeutics, vol.148, issue.3, pp.778-796, 2014.
DOI : 10.2174/156720105774370258

B. Korber, M. Labute, and K. Yusim, Immunoinformatics Comes of Age, PLoS Computational Biology, vol.296, issue.6, p.71, 2006.
DOI : 0193-4511(2002)296[2354:DCIHVS]2.0.CO;2

Y. Kim, Immune epitope database analysis resource, Nucleic Acids Research, vol.40, issue.W1, pp.525-530, 2012.
DOI : 10.1093/nar/gks438

URL : https://academic.oup.com/nar/article-pdf/40/W1/W525/4919640/gks438.pdf

S. Bertholet, Leishmania Antigens Are Presented to CD8+ T Cells by a Transporter Associated with Antigen Processing-Independent Pathway In Vitro and In Vivo, The Journal of Immunology, vol.177, issue.6, pp.3525-3533, 2006.
DOI : 10.4049/jimmunol.177.6.3525

R. Tuladhar, G. Natarajan, and A. Satoskar, Role of Co-stimulation in Leishmaniasis, International Journal of Biological Sciences, vol.7, issue.9, pp.1382-1390, 2011.
DOI : 10.7150/ijbs.7.1382

A. Said and G. Weindl, Regulation of Dendritic Cell Function in Inflammation, Journal of Immunology Research, vol.69, issue.3, p.743169, 2015.
DOI : 10.1038/jid.2013.291

T. Kawai and S. Akira, Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity, Immunity, vol.34, issue.5, pp.637-650, 2011.
DOI : 10.1016/j.immuni.2011.05.006

URL : https://doi.org/10.1016/j.immuni.2011.05.006

H. Moll and C. Berberich, Dendritic Cell-Based Vaccination Strategies: Induction of Protective Immunity against Leishmaniasis, Immunobiology, vol.204, issue.5, pp.659-666, 2001.
DOI : 10.1078/0171-2985-00105

J. Banchereau, Immunobiology of Dendritic Cells, Annual Review of Immunology, vol.18, issue.1, pp.767-811, 2000.
DOI : 10.1146/annurev.immunol.18.1.767

A. Sharpe and G. Freeman, THE B7???CD28 SUPERFAMILY, Nature Reviews Immunology, vol.12, issue.2, pp.116-126, 2002.
DOI : 10.1038/35069118

L. Chen, Co-inhibitory molecules of the B7???CD28 family in the control of T-cell immunity, Nature Reviews Immunology, vol.4, issue.5, pp.336-347, 2004.
DOI : 10.1038/nri1349

I. Gutcher and B. Becher, APC-derived cytokines and T cell polarization in autoimmune inflammation, Journal of Clinical Investigation, vol.117, issue.5, pp.1119-1127, 2007.
DOI : 10.1172/JCI31720

URL : http://www.jci.org/articles/view/31720/files/pdf

R. Nagill and S. Kaur, Vaccine candidates for leishmaniasis: A review, International Immunopharmacology, vol.11, issue.10, pp.1464-1488, 2011.
DOI : 10.1016/j.intimp.2011.05.008

Y. Skeiky, LeIF: a recombinant Leishmania protein that induces an IL- 12-mediated Th1 cytokine profile, J Immunol, vol.161, pp.6171-6179, 1998.
DOI : 10.1084/jem.181.4.1527

URL : http://jem.rupress.org/content/jem/181/4/1527.full.pdf

M. Borges, Potent Stimulation of the Innate Immune System by a Leishmania brasiliensis Recombinant Protein, Infection and Immunity, vol.69, issue.9, pp.5270-5277, 2001.
DOI : 10.1128/IAI.69.9.5270-5277.2001

Y. Skeiky, A recombinant Leishmania antigen that stimulates human peripheral blood mononuclear cells to express a Th1-type cytokine profile and to produce interleukin 12, Journal of Experimental Medicine, vol.181, issue.4, pp.1527-1537, 1995.
DOI : 10.1084/jem.181.4.1527

M. Barhoumi, Leishmania infantum LeIF and its recombinant polypeptides modulate interleukin IL-12p70, IL-10 and tumour necrosis factor-?? production by human monocytes, Parasite Immunology, vol.7, issue.10, pp.583-588, 2011.
DOI : 10.1038/nri2097

URL : https://hal.archives-ouvertes.fr/pasteur-00658263

M. Barhoumi, eIF4A, modulate interleukin (IL)-12, IL-10 and tumour necrosis factor-alpha production by human monocytes, Parasite Immunology, vol.213, issue.5-6, pp.194-199, 2013.
DOI : 10.1016/j.imbio.2007.12.005

URL : https://hal.archives-ouvertes.fr/pasteur-00860036

S. Sakai, Intranasal immunization with Leish-111f induces IFN-?? production and protects mice from Leishmania major infection, Vaccine, vol.28, issue.10, pp.2207-2213, 2010.
DOI : 10.1016/j.vaccine.2009.12.055

R. Coler, Leish-111f, a Recombinant Polyprotein Vaccine That Protects against Visceral Leishmaniasis by Elicitation of CD4+ T Cells, Infection and Immunity, vol.75, issue.9, pp.4648-4654, 2007.
DOI : 10.1128/IAI.00394-07

O. Koutsoni, Leishmania Eukaryotic Initiation Factor (LeIF) Inhibits Parasite Growth in Murine Macrophages, PLoS ONE, vol.148, issue.5, p.97319, 2014.
DOI : 10.1371/journal.pone.0097319.g007

URL : https://hal.archives-ouvertes.fr/pasteur-01060305

F. Eskandari, Immunoliposomes containing Soluble Leishmania Antigens (SLA) as a novel antigen delivery system in murine model of leishmaniasis, Experimental Parasitology, vol.146, pp.78-86, 2014.
DOI : 10.1016/j.exppara.2014.08.016

M. Agallou, Experimental Validation of Multi-Epitope Peptides Including Promising MHC Class I- and II-Restricted Epitopes of Four Known Leishmania infantum Proteins, Frontiers in Immunology, vol.61, issue.4, 2014.
DOI : 10.1016/j.parint.2012.05.010

A. Liukko, Human CD4+ T Cell Responses to the Dog Major Allergen Can f 1 and Its Human Homologue Tear Lipocalin Resemble Each Other, PLoS ONE, vol.127, issue.5, 2014.
DOI : 10.1371/journal.pone.0098461.s007

URL : https://doi.org/10.1371/journal.pone.0098461

A. Monsonego, Increased T cell reactivity to amyloid ?? protein in older humans and patients with Alzheimer disease, Journal of Clinical Investigation, vol.112, issue.3, pp.415-422, 2003.
DOI : 10.1172/JCI200318104

M. Lima, Immunological Cytokine Correlates of Protective Immunity and Pathogenesis in Leprosy, Scandinavian Journal of Immunology, vol.94, issue.4, pp.419-428, 2000.
DOI : 10.1146/annurev.immunol.16.1.593

M. Lutz, An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow, Journal of Immunological Methods, vol.223, issue.1, pp.77-92, 1999.
DOI : 10.1016/S0022-1759(98)00204-X

S. Kar, MAPK-directed phosphatases preferentially regulate pro- and anti-inflammatory cytokines in experimental visceral leishmaniasis: involvement of distinct protein kinase C isoforms, Journal of Leukocyte Biology, vol.88, issue.1, pp.9-20, 2010.
DOI : 10.1189/jlb.0909644

P. Tsagozis, E. Karagouni, and E. Dotsika, Function of CD8+ T lymphocytes in a self-curing mouse model of visceral leishmaniasis, Parasitology International, vol.54, issue.2, pp.139-146, 2005.
DOI : 10.1016/j.parint.2005.02.005

P. Probst, ALeishmania protein that modulates interleukin (IL)-12, IL-10 and tumor necrosis factor-?? production and expression of B7-1 in human monocyte-derived antigen-presenting cells, European Journal of Immunology, vol.40, issue.10, pp.2634-2642, 1997.
DOI : 10.1007/978-3-662-22038-2_5

P. Gurung and T. Kanneganti, infections, Cellular Microbiology, vol.81, issue.9, pp.1286-1294, 2015.
DOI : 10.1128/IAI.00214-13

D. Groot, A. Berzofsky, and J. , From genome to vaccine???new immunoinformatics tools for vaccine design, Methods, vol.34, issue.4, pp.425-428, 2004.
DOI : 10.1016/j.ymeth.2004.06.004

D. Groot and A. , Immunomics: discovering new targets for vaccines and therapeutics, Drug Discovery Today, vol.11, issue.5-6, pp.203-209, 2006.
DOI : 10.1016/S1359-6446(05)03720-7

D. Groot, A. Moise, and L. , Prediction of immunogenicity for therapeutic proteins: state of the art, Curr Opin Drug Discov Devel, vol.10, pp.332-340, 2007.

C. Lundegaard, Modeling the adaptive immune system: predictions and simulations, Bioinformatics, vol.23, issue.24, pp.3265-3275, 2007.
DOI : 10.1093/bioinformatics/btm471

M. Black, Advances in the design and delivery of peptide subunit vaccines with a focus on Toll-like receptor agonists, Expert Review of Vaccines, vol.30, issue.2, pp.157-173, 2010.
DOI : 10.1007/s00018-008-8228-6

E. Gilboa, Opinion: The promise of cancer vaccines, Nature Reviews Cancer, vol.4, issue.5, pp.401-411, 2004.
DOI : 10.1038/nrc1359

R. Stack, IL-4 treatment of small splenic B cells induces costimulatory molecules B7?1 and B7?2, J Immunol, vol.152, pp.5723-5733, 1994.

D. Jr and A. , Evaluation of IFN-gamma and TNF-alpha as immunological markers of clinical outcome in cutaneous leishmaniasis, Rev Soc Bras Med Trop, vol.35, pp.7-10, 2002.

P. Wilhelm, Rapidly Fatal Leishmaniasis in Resistant C57BL/6 Mice Lacking TNF, The Journal of Immunology, vol.166, issue.6, pp.4012-4019, 2001.
DOI : 10.4049/jimmunol.166.6.4012

URL : http://www.jimmunol.org/content/jimmunol/166/6/4012.full.pdf

P. Fromm, Fatal Leishmaniasis in the Absence of TNF Despite a Strong Th1 Response, Frontiers in Microbiology, vol.89, issue.80, 2016.
DOI : 10.1016/S0092-8674(00)80240-8

H. Davis, Novel vaccines and adjuvant systems: The utility of animal models for predicting immunogenicity in humans, Human Vaccines, vol.4, issue.3, pp.246-250, 2008.
DOI : 10.4161/hv.4.3.5318

L. Shultz, Humanized mice for immune system investigation: progress, promise and challenges, Nature Reviews Immunology, vol.8, issue.11, pp.786-798, 2012.
DOI : 10.1016/j.chom.2010.08.001

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749872/pdf

D. Williamson, Approaches to Modelling the Human Immune Response in Transition of Candidates from Research to Development, Journal of Immunology Research, vol.9, issue.5, 2014.
DOI : 10.1586/erv.10.22

Y. Zeng, Generation of human MHC (HLA-A11/DR1) transgenic mice for vaccine evaluation, Human Vaccines & Immunotherapeutics, vol.67, issue.3, pp.829-836, 2016.
DOI : 10.1016/j.vaccine.2009.08.047