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Modulation of Kv3.1b potassium channel level and intracellular potassium concentration in 
158N murine oligodendrocytes and BV-2 murine microglial cells treated with 7-
ketocholesterol, 24S-hydroxycholesterol or tetracosanoic acid (C24:0) 

Maryem Bezine et al. 

ABSTRACT 

Little is known about K+ regulation playing major roles in the propagation of nerve impulses, as 

well as in apoptosis and inflammasome activation involved in neurodegeneration. As increased 

levels of 7-ketocholesterol (7KC), 24S-hydroxycholesterol (24S-OHC) and tetracosanoic acid 

(C24:0) have been observed in patients with neurodegenerative diseases, we studied the effect of 

24 and/or 48 h of treatment with 7KC, 24S-OHC and C24:0 on Kv3.1b potassium channel level, 

intracellular K+ concentration, oxidative stress, mitochondrial dysfunction, and plasma membrane 

permeability in 158N oligodendrocytes and BV-2 microglial cells. In 158N cells, whereas 

increased level of Kv3.1b was only observed with 7KC and 24S-OHC but not with C24:0 at 24 h, 

an intracellular accumulation of K+ was always detected. In BV-2 cells treated with 7KC, 24S-

OHC and C24:0, Kv3.1b level was only increased at 48 h; intracellular K+ accumulation was 

found at 24 h with 7KC, 24S-OHC and C24:0, and only with C24:0 at 48 h. Positive correlations 

between Kv3.1b level and intracellular K+ concentration were observed in 158N cells in the 

presence of 7KC and 24S-OHC, and in 7KC-treated BV-2 cells at 48 h. Positive correlations 

were also found between Kv3.1b or the intracellular K+ concentration, overproduction of reactive 

oxygen species, loss of transmembrane mitochondrial potential and increased plasma membrane 

permeability in 158N and BV-2 cells. Our data support that the lipid environment affects Kv3.1b 

channel expression and/or functionality, and that the subsequent rupture of K+ homeostasis is 

relied with oligodendrocytes and microglial cells damages. 
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ABSTRACT 

Little is known about K+ regulation playing major roles in the propagation of nerve impulses, as 

well as in apoptosis and inflammasome activation involved in neurodegeneration. As increased 

levels of 7-ketocholesterol (7KC), 24S-hydroxycholesterol (24S-OHC) and tetracosanoic acid 

(C24:0) have been observed in patients with neurodegenerative diseases, we studied the effect of 

24 and/or 48 h of treatment with 7KC, 24S-OHC and C24:0 on Kv3.1b potassium channel level, 

intracellular K+ concentration, oxidative stress, mitochondrial dysfunction, and plasma membrane 

permeability in 158N oligodendrocytes and BV-2 microglial cells. In 158N cells, whereas 

increased level of Kv3.1b was only observed with 7KC and 24S-OHC but not with C24:0 at 24 h, 

an intracellular accumulation of K+ was always detected. In BV-2 cells treated with 7KC, 24S-

OHC and C24:0, Kv3.1b level was only increased at 48 h; intracellular K+ accumulation was 

found at 24 h with 7KC, 24S-OHC and C24:0, and only with C24:0 at 48 h. Positive correlations 

between Kv3.1b level and intracellular K+ concentration were observed in 158N cells in the 

presence of 7KC and 24S-OHC, and in 7KC-treated BV-2 cells at 48 h. Positive correlations 

were also found between Kv3.1b or the intracellular K+ concentration, overproduction of reactive 

oxygen species, loss of transmembrane mitochondrial potential and increased plasma membrane 

permeability in 158N and BV-2 cells. Our data support that the lipid environment affects Kv3.1b 

channel expression and/or functionality, and that the subsequent rupture of K+ homeostasis is 

relied with oligodendrocytes and microglial cells damages. 

KEYWORDS: potassium, Kv3.1b, 7-ketocholesterol, 24S-hydroxycholesterol, oxysterols, 

tetracosanoic acid (C24:0), 158N cells, BV-2 cells 

 

Abbreviations: 7KC, 7-ketocholesterol; 24S-OHC, 24S-hydroxycholesterol; C24:0, tetracosanoic 

acid; K+, Potassium; AD, Alzheimer’s disease; MS, Multiple Sclerosis; CSF, cerebrospinal fluid; 

X-ALD, X-linked adrenoleukodystrophy; VLCFA, very long chain fatty acid; ROS, reactive 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
3 

 

oxygen species; Kv, voltage-gated K+ channels; EtOH, ethanol; 4-AP, 4-aminopyridine; 

DiOC6(3), 3,3′- dihexyloxacarbocyanine iodide; O2
●-, superoxide anion; DHE, dihydroethidium; 

PI, propidium iodide; [K+] i, intracellular potassium concentration; MFI, mean fluorescence 

intensity; ∆Ψm, transmembrane mitochondrial potential. 

 

1. INTRODUCTION 

Cumulative evidence suggests that the pathophysiogenesis of major neurodegenerative diseases 

are associated with abnormalities of lipid metabolism, which could favor the rupture of RedOx 

homeostasis, activation of inflammation, and induction of nerve cell dysfunctions, which are 

considered hallmarks of neurodegeneration [1, 2]. There is evidence that cholesterol and some of 

its derivatives may contribute to neurodegeneration. The brain is the most cholesterol-rich organ 

in the body [3], about 70% of the cholesterol within the brain is in myelin, the remaining 30% of 

brain cholesterol is divided between glial cells (20%) and neurons (10%), mainly located in the 

cellular membrane [4]. In humans, the causal relationship between cholesterol and dementia 

needs to be clarified [5]. However, this does not exclude the possibility that cholesterol transport 

and metabolism probably play key roles in the development of Alzheimer’s disease (AD). Indeed, 

the strongest genetic risk factor for AD is APOE-ε4 [6]. Since oxysterols, which are oxygen 

derivatives of cholesterol (formed enzymatically and/or by auto-oxidation) [7], are thought to 

reflect cerebral cholesterol turnover, there has been great interest in the diagnostic and prognostic 

value of these metabolites in neurodegenerative diseases [8]. The key role of oxysterols in AD 

has been strongly supported by research pointing to their involvement in modulating 

neuroinflammation, Aβ accumulation, and cell death [9]. One cholesterol oxide derivative, 24(S)-

hydroxycholesterol (24S-OHC; also named cerebrosterol) could constitute a potential biomarker 

of neurodegeneration, especially of AD [10]. 24S-OHC is synthesized in the brain via CYP46A1 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
4 

 

[11], expressed in neurons, including hippocampal and cortical neurons involved in learning and 

memory [12]. Either decreased or increased concentrations of 24S-OHC were found in the 

plasma and cerebrospinal fluid (CSF) of patients with AD. Decreased 24S-OHC concentrations in 

the plasma of AD patients were attributed to brain atrophy, which could be a consequence of the 

decrease in metabolically active neurons [13]. On the other hand, a significant increase in 24S-

OHC, correlating with an increase in the tau protein level, has been described in the CSF of 

patients with mild cognitive impairment (MCI) and AD [14, 15]. Higher plasma and CSF levels 

of 24S-OHC have also been reported in AD patients and in patients with vascular dementia [16, 

17]. These data favor the hypothesis that 24S-OHC may be a good marker of "brain health" in old 

age, and would be increased during the progression of AD and decrease in later stages. As 

elevated concentrations of 24S-OHC induce cell death in neuronal cells [18, 19], it has been 

suggested that 24S-OHC-induced lipotoxicity might contribute to neurodegeneration and brain 

atrophy. Among oxysterols, a variety of compounds that are derived from cholesterol 

autoxidation were also identified at increased levels in the frontal and occipital cortex. These 

included 7-ketocholesterol (7KC; also named 7-oxocholesterol), 7α-hydroxycholesterol, 4β-

hydroxycholesterol, 5α, 6α-epoxycholesterol, and 5β, 6β-epoxycholesterol [20]. Increased levels 

of 7KC were also identified in the plasma and/or CSF of patients with major neurodegenerative 

diseases such as multiple sclerosis (MS) [21, 22], X-linked adrenoleukodystrophy (X-ALD) [23], 

and Niemann-Pick disease [24, 25]. As 7KC is a potent inducer of oxidative stress, inflammation 

and cell death, which are major events associated with major ageing-related diseases, including 

AD [26], its contribution to neurodegeneration is widely suspected. In addition, 7KC has been 

shown to trigger not only mitochondrial but also peroxisomal dysfunctions leading to increased 

levels of very long chain fatty acids (VLCFA; C≥22), which could favor brain damages [27]. 

Thus, in peroxisomal leukodystrophies, resulting from either peroxisome biogenesis disorders or 
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single peroxisomal enzyme deficiencies [27], increased levels of VLCFA, especially C24:0 and 

C26:0, are observed in the plasma and tissues of patients [28]. In the cortical region of patients 

with AD at the stage V–VI of the disease, an accumulation of C22:0 as well as of C24:0 and 

C26:0, which are substrates for peroxisomal β-oxidation [29], have been found [30]. In addition, 

the level of plasmalogens (etherphospholipids), which need intact peroxisomes for their 

biosynthesis [31, 32], was decreased in severely affected tissues [30] supporting peroxisomal 

dysfunctions [33]. In the erythrocytes and plasma of patients with AD, increased levels of C26:0 

were also observed, thus suggesting that peroxisomal dysfunctions and/or alterations of 

desaturase and elongase activities may contribute to cognitive dysfunctions [34, 35]. Moreover, 

increased levels of VLCFA have also been described in the relapsing remitting and secondary 

progressive forms of MS [36].  

At the moment, several data indicate that 7KC, 24S-OHC and C24:0 are potent inducers of 

neurodegeneration, mainly via their ability to promote overproduction of reactive oxygen species 

(ROS) and mitochondrial dysfunctions [20, 25, 37], which could subsequently contribute to 

inflammation and cell death [27, 38]. However, little is known about their ability to disturb ionic 

homeostasis, which is involved in major biological processes necessary for the proper functioning 

of the central and peripheral nervous system, such as signal transmission and the propagation of 

nerve impulse. Depending on the cell type considered, 7KC and 24S-OHC are able to modulate 

or not intracellular Ca2+ level [39, 40, 41], and in human retinal cells, 7KC-induced toxicity has 

been reported to activate the P2X7 receptor which leads to Na+ and Ca2+ influx, and K+ efflux 

[42]. Activation of P2X7 receptor triggers the formation of large nonselective membranes pores 

which results in inflammation through the inflammasome, oxidative stress and, ultimately, cell 

death especially by apoptosis [42]. In mitochondria of wild-type and Abcd1−/− mice, it was also 

described that C24:0-induced cytotoxicity diminished the mitochondrial Ca2+ retention capacity 
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[43]. C24:0 has also been shown to increase intracellular Ca2+ levels in glial cells and neurons 

from rat hippocampus culture [44]. These different effects suggest that C24:0-induced 

cytotoxicity could be due to its dramatic effects on mitochondrial dysfunction and Ca2+ 

deregulation. However, nothing is known about the impact of C24:0 on K+ homeostasis. 

Additionally, in bone marrow derived-macrophages from Abcd1+/− C57BL/6 mice, glibenclamide 

(a K+ efflux inhibitor) was able to block inflammasome activation and IL-1β secretion, which is 

thought to contribute to demyelination and brain degeneration in patients with X-linked 

adrenoleukodystrophy (X-ALD) [45]. ATP-sensitive potassium (KATP) channels localized in the 

plasma membrane and in the inner mitochondrial membrane have been shown to play important 

roles in modulating neuronal excitability, cell survival, and cerebral vascular tone. Interestingly, 

diazoxide, which is a KATP activator, can ameliorate molecular, cytopathological, and 

behavioral alterations in 3xTg mice, which constitute a mouse model of AD [46]. As sustained-

release fampridine, a slow release formulation of 4-aminopiridine (4-AP), is used for the 

treatment of walking difficulties in MS, and is considered efficient for the symptomatic 

management of this disease [47], it can be supposed that better understanding of the regulation of 

K+ homeostasis in MS patients, and in patients with AD, where a potential role of K+ is suspected 

[48], might lead to the identification of new therapeutic targets and new treatments. It has thus 

been thought that voltage-gated K+ (Kv) channels, mainly Kv3.1 designed for high-frequency 

repetitive firing and expressed by different types of nerve cells in the CNS [49, 50], could 

constitute new therapeutic targets [51]. This hypothesis is reinforced by the following 

observations: in the neocortex of aged APPPS1 mice (a transgenic model of Alzheimer's disease), 

Kv3.1 mRNA and protein levels were significantly lower compared to wild type, suggesting that 

a decrease in Kv3 currents could play a role in the cognitive symptoms of AD [52]; 4-AP 

modulation of an Aβ(1-42)-induced I(K) (candidate channel Kv3.1) in human microglia could 
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serve as a therapeutic strategy for neuroprotection in AD [53]. At the molecular level, alternative 

splicing of the Kv3.1 gene gives rise to two isoforms that differ only in their COOH-terminal 

sequence, the last 18 amino acid sequences in Kv3.1a are replaced by 84 amino acid residues in 

Kv3.1b [54, 55, 56]. Interestingly, in the mature nervous system, the Kv3.1b splice variant of this 

channel predominates [57].  

As demyelinating and non-demyelinating neurodegenerative diseases involve microglial 

activation, which could have detrimental and beneficial effects depending on the stage of the 

diseases [58], it was of important to determine the impact of 7KC, 24S-OHC and C24:0 on BV-2 

murine microglial cells. In addition, as a deterioration of the white matter does not seem specific 

to neurodegenerative demyelinating diseases, such as MS and peroxisomal leukodystrophies, and 

has been reported in patients with dementia [59], it was of interest to determine the impact of 

7KC, 24S-OHC and C24:0 on oligodendrocytes, which are myelin synthetizing cells in the 

central nervous system [60]. Indeed, there is now evidence that the breakdown of myelin is 

associated with AD. It is supposed that the vulnerability of oligodendrocytes in AD induces 

myelin breakdown and the loss of the myelin sheath, which might be the initiating step of the 

changes in the earliest stage of AD, prior to appearance of amyloid and tau pathology [61]. To 

this end, 158N murine oligodendrocytes and BV-2 murine microglial cells were cultured without 

or with 7KC, 24S-OHC and C24:0, and the effects of these lipids on Kv3.1b level, intracellular 

K+concentration, ROS overproduction, mitochondrial activity, and plasma membrane integrity 

were determined.  

 

2. MATERIALS AND METHODS 

2.1. Cells, cell cultures and treatments 
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Murine oligodendrocytes (158N), immortalized with the SV40 large T-antigen derived from 

Tabby male (Ta/Y) control mice [62], show several characteristics of differentiated 

oligodendrocytes [63]. 158N cells were plated at a density of 34 x 103 cells / cm2 in Dulbecco’s 

modified Eagle medium with L-glutamine (Lonza, Levallois, France) supplemented with 5% 

heat-inactivated fetal bovine serum (FBS) (Pan Biotech, Aidenbach, Germany) and 1% 

antibiotics (100 U/mL penicillin, 100 mg/mL streptomycin) (Pan Biotech).  

Murine microglial cells (BV-2) were from Banca-Biologica Cell Factory (IST Genoa, Italy). 

They were seeded at a density of 17 x 103 cells / cm2 in RPMI 1640 (Lonza, Amboise, France) 

supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS) (Pan Biotech, 

Aidenbach, Germany) and 1% antibiotics (100 U/mL penicillin, 100 mg/mL streptomycin) (Pan 

Biotech).  

158N and BV-2 cells were incubated at 37 °C in a 5% CO2 humidified atmosphere in tissue 

culture dishes (100 × 20 mm, FALCON, Corning, Tewksbury, MA, USA) (with 10 mL of culture 

medium), or per 12-wells plate (with 1 mL of culture medium). After 24 h of culture, cells were 

treated for 24 h with either oxysterols (7KC or 24S-OHC), or C24:0 used in a range of 

concentrations from 2.5 to 25 µM, and from 1 to 20 µM, respectively. Initial solutions of 7-

ketocholesterol (7KC) (Ref: C2394, Sigma-Aldrich, St Quentin Fallavier, France) and 24S-

hydroxycholesterol (24S-OHC) (provided by Prof. M. Samadi, Univ. Lorraine, Metz, France) 

were prepared as previously described to obtain a final concentration of 2 mM [64, 65]. Briefly, 

to prepare the initial solution, 800 µg of oxysterols (7KC or 24S-OHC) were dissolved in 50 µL 

of absolute ethanol (EtOH), used as vehicle, and 950 µL of culture medium was added. 

Tetracosanoic acid (C24:0) (Sigma-Aldrich) was prepared at 400 µM in α-cyclodextrin (vehicle) 

(Sigma-Aldrich). The maximal final concentration of absolute ethanol or α-cyclodextrin in the 

culture medium was 0.05% and 1 µM, respectively [41, 65, 66, 67]. The concentrations of 7KC, 
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24S-OHC and C24:0, and the treatment times were based on data obtained in 158N cells treated 

with 7KC and 24S-OHC, and 158N and SK-N-BE cells treated with C24:0 [19, 41, 65, 66, 67]. In 

the heat inactivated FBS used the concentration of C24:0 was very low (682.20 nmol/L), and no 

7KC and 24S-OHC were detected [68]. 4-aminopyridine (4-AP: 4 mM) (Sigma-Aldrich) was 

prepared as a stock solution at 800 mM and 200 mM in culture medium, respectively. 4-AP was 

incubated with the cells for 1h prior to incubation with 7KC, 24S-OHC and C24:0.  

 

2.2. Measurement of transmembrane mitochondrial potential with DiOC6 (3) 

Variations in the mitochondrial transmembrane potential (∆Ψm) were measured with the cationic 

lipophilic dye 3,3′- dihexyloxacarbocyanine iodide (DiOC6(3) (Life Technologies / Thermo 

Fisher Scientific, Courtaboeuf, France). Cells treated or not with 7KC, 24S-OHC (2.5 to 25 µM) 

or C24:0 (1 to 20 µM) for 24 h were pooled, and stained for 10 min at 37°C with DiOC6(3) used 

at 40 nM; mitochondrial depolarization (loss of ∆Ψm) is indicated by a decrease in green 

fluorescence measured by flow cytometry. Green fluorescence was collected through a 520 ± 10 

nm bandpass filter on a Galaxy flow cytometer (Partec, Münster, Germany). A total of 10,000 

cells were analyzed for each sample, and the fluorescent signals were measured on a logarithmic 

scale. Data were analyzed with Flomax (Partec) or FlowJo (Tree Star Inc., Ashland, OR, USA) 

software. 

 

2.3. Measurement of reactive oxygen species production with dihydroethydium  

Overproduction of superoxide anion (O2
●-) were detected with dihydroethidium (DHE; Life 

Technologies) [69]. DHE, a non-fluorescent compound, diffuses through cell membranes and is 

rapidly oxidized in ethidium under the action of reactive oxygen species, mainly O2
●- [69]. 

Control (untreated cells), 7KC, 24S-OHC (2.5 to 25 µM) or C24:0 (1 to 20 µM) -treated cells 
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were pooled and stained with DHE (2 µM). After 15 min at 37°C, the fluorescent signals of 

DHE-stained cells were collected through a 520/20 nm bandpass filter. Fluorescent signals were 

measured on a logarithmic scale on a GALAXY flow cytometer (Partec); 10,000 cells were 

acquired; data were analyzed with Flomax (Partec) or FlowJo (Tree Star Inc.) software. Three 

independent experiments carried out in triplicate were performed. 

 

2.4. Quantification of cell death by staining with propidium iodide 

Control (untreated cells), 7KC, 24S-OHC (2.5 to 25 µM) or C24:0 (1 to 20 µM) -treated cells 

were pooled and stained for 10 min with propidium iodide (PI: 1 µg/mL), a fluorescent 

compound which enters dead cells or cells with damaged cytoplasmic membranes [70]. 

Membrane permeability was analyzed with a Galaxy flow cytometer (Partec) equipped with a 

488-nm blue laser. Red fluorescence of PI was collected on a logarithmic scale of fluorescence 

using a 590 ± 10 nm bandpass filter and analyzed with Flomax (Partec) or FlowJo (Tree Star 

Inc.) software. 

 

2.5.  Measurement of intracellular potassium by flame photometry 

Intracellular potassium [K+] i was measured using a Flame Photometer (Biocode Hycel PHF 108, 

Biocode Hycel, Liège, Belgium) with a propane flame; lithium was used as an internal standard. 

After 24 h of culture, cells were treated for 24 h with either oxysterols (7KC, 24S-OHC (2.5 to 25 

Μm)) or C24:0 (1 to 20 µM). Cells were washed with HBSS (pH=7.4), resuspended in 1 mL of 

deionized water and lysed by repeated cycles of freezing and thawing. They were then 

centrifuged at 3000 rpm for 10 min. The supernatant was analyzed. 
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2.6.  Identification and quantification of Kv3.1 by flow cytometry and fluorescence 

microscopy 

Kv channels are pore-forming subunits of voltage-dependent potassium channels which can be 

detected with the use of different antibodies [71]. Identification and quantification of Kv3.1 were 

performed on cell suspensions and deposits by flow cytometry and fluorescence microscopy, 

respectively. Cells were collected, washed in PBS, 1% BSA, 0.1% NaN3, resuspended in PBS, 

and fixed in freshly prepared 2% (w/v) p-formaldehyde diluted in PBS (pH 7.4) (10 min; room 

temperature). Cells were permeabilized with (PBS, 0.05% saponin (Sigma–Aldrich), 10% FBS 

(Pan Biotech)) for 20 min. After two washes in PBS, cells were incubated (1 h; 4°C) with the 

primary antibody directed against Kv3.1 diluted at 1:100 in the permeabilizing buffer (rabbit 

polyclonal (Abcam, Cambridge, UK); ref: ab101693, mouse monoclonal (Santa-Cruz 

Biotechnology, Santa-Cruz, CA, USA); ref: sc-514554; mouse monoclonal (Sigma-Aldrich); ref: 

SAB5200030 (anti-kv3.1b)). Cells were then washed twice with PBS and incubated (1 h; room 

temperature) with a 488-Alexa goat anti-rabbit (Abcam) or a goat anti-mouse (Invitrogen / 

Thermo Fisher Scientific) used at 1/500. A conjugated control (without primary antibody) was 

performed. Cells were washed and resuspended in PBS, and analyzed by flow cytometry on a 

Galaxy flow cytometer (Partec). The green fluorescence of 488-Alexa was collected with a 

520/10 nm bandpass filter. For each sample, 10,000 cells were acquired, and the data were 

analyzed with Flomax (Partec) or FlowJo (FlowJo Inc.) software. For fluorescence microscopy 

analyses, nuclei were counterstained with Hoechst 33342 (Sigma–Aldrich) used at a 

concentration of 2 µg/mL. After washing with PBS, cell deposits were obtained by 

cytocentrifugation with a cytospin 4 centrifuge (Shandon, Cheshire, UK). Slides were mounted 

and observed with an Axioskop Zeiss microscope, and digitalized images were obtained with an 

Axiocam Zeiss camera (Zeiss, Jena, Germany).  
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2.7. Polyacrylamide gel electrophoresis and western blotting  

Cells washed in PBS were lysed in 100 µL of cold radio-immunoprecipitation assay buffer 

(RIPA) (10 mM Tris–HCl, pH 7.2, 150 mM NaCl, 0.5% Nonidet NP40, 0.5% Na deoxycholate, 

0.1% SDS, 2 mM EDTA and 50 mM NaF) containing 1:25 protease inhibitor cocktail (Roche 

Diagnostics Corporation, Meylan, France). After incubation on ice for 30 min, samples were 

centrifuged at 14,000×g in an Eppendorf microcentrifuge for 15 min at 4°C, and the supernatant 

was recovered. The protein concentration was measured in the supernatant using the 

Bicinchoninic Acid Assay (Sigma-Aldrich). Seventy micrograms of protein were resolved in gel 

loading buffer (125 mM Tris-HCl, pH 6.8, 4.6% SDS, 20% glycerol, 0.003% bromophenol blue) 

and separated on a 10% sodium dodecyl sulfate–polyacrylamide gel then subsequently 

transferred onto nitrocellulose membranes (Thermo Fisher Scientific). After blocking for 1 h with 

5% BSA in PBST (0.1% Tween 20) (Sigma-Aldrich), membranes were incubated overnight at 

4°C with the primary antibody raised against Kv3.1b (1:500 (mouse monoclonal; ref: 

SAB5200030; Sigma-Aldrich)) diluted with PBST, 1% BSA. Antibody directed against β-actin 

(1:5000 (mouse monoclonal antibody; ref: A2228; Sigma-Aldrich)) was used to detect reference 

protein expression. The membrane was then washed twice with PBST and incubated for 1 h at 

room temperature with horseradish peroxidase-conjugated goat anti-mouse antibody (Cell 

Signaling Technology, Danvers, MA, USA) diluted at 1:5,000. Immunopositive bands were 

visualized by the enhanced chemiluminescence kit (Super Signal West Femto Maximum 

Sensitivity Substrate, Thermo Fisher Scientific) and Chemidoc XRS+ (Santa Cruz 

Biotechnology). Semi-quantification of Kv3.1b luminescence signal intensity versus actin was 

determined by computer-assisted analyses of optical density using Image Lab 4.0.1 software 

(Bio-Rad, Marnes La Coquette, France). 
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2.8. Oxysterol extraction 

Fifty µL of PBS was added to the cell pellet (about 1 x 107 cells) followed by 1.05 mL absolute 

ethanol while under sonication. Sonication was continued for a further 5 min. After a brief 

vortex, the suspension was transferred to a microcentrifuge tube and centrifuged at 16,000 g at 

4oC for 30 min. The supernatant was diluted to 70% ethanol by the addition of 0.4 mL of water. 

Oxysterols were separated from cholesterol and other sterols of similar polarity in the resulting 

solution by solid phase extraction (SPE) on a Waters Sep-Pak tC18 column (200 mg) essentially 

as described in Abdel-Khalik et al. [72]. In brief, after washing the SPE column with absolute 

ethanol (4 mL) followed by 70% ethanol (6 mL), the cell extract (1.5 mL, 70% ethanol) was 

added to the column followed by a wash of 5.5 mL 70% ethanol. Oxysterols elute in the flow-

through and column-wash (7 mL 70% ethanol), while cholesterol remains on the column. The 

oxysterol fraction was divided into two equal sub-fractions (A) and (B) and lyophilised. 

 

2.9. Oxysterol derivatisation 

The derivatisation procedure was essentially as described in Abdel-Khalik et al. [72]. In brief, 

each sub-fraction (A) and (B) was reconstituted in propan-2-ol (100 µL). Sub-fraction (A) was 

incubated with 1 mL of phosphate buffer (50 mM, pH 7) containing cholesterol oxidase (0.26 u) 

from Streptomyces sp (Sigma Aldrich) for 1h at 37°C. The reaction was quenched with methanol 

(2 mL). Sub-fraction (B) was treated in an identical fashion but in the absence of cholesterol 

oxidase. 

Glacial acetic acid (150 µL) was added to both sub-fractions which were derivatised with the 

Girard P (GP) reagent; (A) with [2H5]GP (190 mg, bromide salt) [73] and (B) with [2H0]GP 

(150 mg, chloride salt, TCI Europe) at room temperature, overnight in the dark.  
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Excess derivatisation reagent was removed using an Oasis HLB column (60 mg, Waters). After 

washing the column with methanol (6 mL), 10% methanol (6 mL) and 70% methanol (4 mL), the 

derivatisation mixture (3.25 mL, 70% organic) was loaded on the column followed by a wash 

with 70% methanol (1 mL) and 35% methanol (1 mL). The flow-through and washes were 

collected and diluted with water to give 35% methanol (9 mL). This was re-cycled through the 

column and the dilution procedure repeated to give 17.5% methanol (19 mL) which was re-

cycled through the column once again. The effluent was discarded. The column was then washed 

with 10% methanol (6 mL). At this point all oxysterols are bound to the column while 

derivatisation reagent has been removed. Finally, oxysterols were eluted with methanol (2 mL). 

2.10. LC-MS(MSn) analysis 

Sub-fraction (A) contains oxysterols derivatised with [2H5]GP at position C-3 after treatment 

with cholesterol oxidase. Sub-fraction (B) contains oxysterols derivatised with [2H0]GP at 

position C-7 in the absence of cholesterol oxidase. Prior to LC-MS(MS)n analysis equal aliquots 

of sub-fractions (A) and (B) were combined and diluted to 60% methanol. Analysis was 

performed on an LTQ-Orbitrap Elite (Thermo Fisher Scientific) equipped with an electrospray 

probe and an Ultimate 3000 LC system (Dionex, now Thermo Fisher Scientific) as previously 

described [73]. For each injection four scan events were performed (one high resolution scan 

120,000 at m/z 400) and four multistage fragmentation events in the LTQ linear ion trap. 

 

2.11. Statistical analysis 

Statistical analyses were carried out with GraphPad Prism 6.07 software. Data were expressed as 

mean ± SEM and statistical analyses were performed by two-way ANOVA (Tukey’s test). The 
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Pearson’s correlation test was used to evaluate the relationships between various parameters. P 

values < 0.05 were considered statistically significant. 

 

3. RESULTS 

3.1. Evaluation of the expression of Kv3.1 protein in 158N murine oligodendrocytes and 

BV-2 murine microglial cells 

The presence of Kv3.1 protein (Kv3.1a and/or Kv3.1b) in 158N and BV-2 cells was detected by 

flow cytometry (Fig. 1A) and immunofluorescence microscopy (Fig. 1B). The levels of Kv3.1 

protein were studied using either a mouse monoclonal antibody raised against amino acids 118-

179 (Santa Cruz antibody recognizing Kv3.1a and Kv3.1b), a rabbit polyclonal antibody (Abcam 

from unknown specificity regarding the a and b subtype of Kv3.1), and a mouse monoclonal 

antibody raised against a peptide corresponding to the C terminus (437-585) (Sigma-Aldrich 

antibody recognizing Kv3.1b). With all antibodies used, strong expression of Kv3.1 was 

observed in both 158N and BV-2 cells: the percentage of Kv3.1 positive cells ranged from 90 to 

98%, and the mean fluorescence intensity (MFI) was always stronger than that in conjugated 

controls (Fig. 1A). This high expression of kv3.1 was confirmed by fluorescence microscopy 

(Fig. 1B). Altogether, our data indicate that Kv3.1 is strongly expressed by 158N and BV-2 cells. 

Further analyses were conducted by western blotting in order to determine the specificity of the 

antibodies used. In our hands, the Santa-Cruz antibody was not suitable to perform western blot 

analyses. As the specificity of the Abcam antibody was not provided by the manufacturer, 

immunoblot analysis was not done. It is noteworthy that immunoblot analysis of total protein 

extracts performed with the Sigma-Aldrich antibody revealed a single band at around 66 kDa 

corresponding to the core Kv3.1b [71] (Fig. 1C). For further analyses, the Sigma-Aldrich 
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antibody was used to characterize the effects of 7KC, 24S-OHC and C24:0 on Kv3.1b 

expression.  

 

3.2. Effect of 7-ketocholesterol, 24S-hydroxycholesterol and tetracosanoic acid (C24:0) 

on Kv3.1b channel level in 158N and BV-2 cells 

Flow cytometric analyses associated or not with western blotting were performed to investigate 

the effects of 7KC, 24S-OHC and C24:0 on Kv3.1b level in158N and BV-2 cells. To this end, 

158N cells were cultured for 24 h without (control), or with 7KC (2.5 to 25 µM), 24S-OHC (2.5 

to 25 µM) and C24:0 (1 to 20 µM), or with the different vehicle (EtOH (0.005 to 0.05%); α-

cyclodextrin (0.05 to 1 mM)). After 24 h of treatment with 7KC (25 µM, 24h) and 24S-OHC (25 

µM, 24h), no 7KC and 24S-OHC metabolites listed in Supplementary Fig. 1A-B were detected 

in 158N and BV2-treated cells as well as in control cells and vehicle-treated cells. The level of 

Kv3.1b was simultaneously analyzed by flow cytometry and western blotting. Under treatment 

with 7KC and 24S-OHC, flow cytometric analyses showed an increase in Kv3.1b level at 12.5 

and 25 µM as compared with the corresponding EtOH-treated cells (Fig. 2A). No significant 

difference was observed between untreated cells (control) and EtOH-treated cells at 0.005% and 

0.025% (Fig. 2A). These data are in agreement with those obtained by western blot analysis, 

which also revealed a significant increase in Kv3.1b under treatment with 7KC (2.5 µM) (Fig. 

2B). With C24:0, used in a range of concentration from 1 to 20 µM, no modification of Kv3.1b 

level was found by either flow cytometry or western blot analysis; no difference was observed 

between control and α-cyclodextrin-treated cells (Fig. 2A and B). 

In BV-2 cells, by flow cytometry, no significant modulation of Kv3.1b level was revealed after 

24 h of treatment with oxysterols (7KC or 24S-OHC: 2.5 to 25 µM) or C24:0 (1 to 20 µM) (Fig. 
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3A). Prolonged exposure (48 h) was required to induce significant increase of Kv3.1b with 7KC 

and 24S-OHC (25 µM) and with C24:0 (10 µM) (Fig. 3B). 

 

3.3. Effects of 7-ketocholesterol, 24S-hydroxycholesterol and tetracosanoic acid (C24:0) 

on the intracellular K + level 

The impact of 7KC (2.5 to 25 µM), 24S-OHC (2.5 to 25 µM) and C24:0 (1 to 20 µM) on [K+]i 

was determined in 158N and BV-2 cells by flame photometry (Fig. 4). 4-AP (4 mM), a universal 

Kv channel blocker, was used as a positive control to favor K+ accumulation. 

In 158N cells, marked effects of 7KC and 24S-OHC were detected on [K+]i. Significant increases 

in [K+]i were induced by 7KC and 24S-OHC from 2.5 to 25 µM as compared with the 

corresponding vehicle (EtOH) concentration (Fig. 4 A). Lower K+ accumulation was observed 

with C24:0, even though significant increases were detected from 5 to 20 µM (Fig. 4A). With the 

vehicles, as compared with untreated cells, slight effects were detected with EtOH at 0.05% only 

(Fig. 4A). 

The result obtained for BV-2 cells, after 24 h with either 7KC, 24S-OHC or C24:0 showed a 

slight effect on [K+]i (Fig. 4B). After 48 h of treatment with 7KC or 24S-OHC, as compared with 

the corresponding vehicle (EtOH), no significant differences were observed (Fig. 4C). After 48 h 

of treatment with C24:0, a slight but significant increase was observed at 20 µM only (Fig. 4C). 

No difference was observed between control and vehicle (EtOH or α-cyclodextrin) (Fig. 4B and 

C). 

 

3.4 Evaluation of the correlation between Kv3.1b level and intracellular potassium 

concentration 
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The correlation between Kv3.1b level and [K+]i was mainly observed in 158N cells treated with 

7KC for 24 h (r = 0.83; p < 0.0001) and in BV-2 cells treated for 24 h (r = 0.65; p=0.056) and 48 

h (r = 0.68; p < 0.013) (Fig. 5). With 24S-OHC a significant correlation was observed in 158N 

only (r = 0.74; p = 0.0009) (Fig. 5). No correlation was observed under treatment with C24:0 

(Fig. 5). 

 

3.5. Evaluation of the correlation between Kv3.1b level, intracellular potassium, and cell 

damages 

The correlation between Kv3.1b level, [K+]i and cell damages induction was studied by taking 

into account the percentage of DiOC6(3)-negative cells, and DHE- and PI-positive cells (Tables 1 

and 2). The percentage of DiOC6(3)-negative cells (cells with depolarized mitochondria), of 

DHE-positive cells (cells which overproduce O2
●-) and PI-positive cells (cells with damaged 

plasma membrane and/or dead cells) among 158N cells treated for 24 h with 7KC (2.5 to 25 µM), 

24S-OHC (2.5 to 25 µM), and C24:0 (1 to 20 µM) are shown in Supplementary Table 1. The 

percentage of DiOC6(3)-negative cells, and of DHE- and PI-positive cells among BV-2 cells 

treated with 7KC (2.5 to 25 µM), 24S-OHC (2.5 to 25 µM), and C24:0 (1 to 20 µM) for 24 and 

48 h are shown in Supplementary Tables 2 and 3, respectively.  

In agreement with previous report [63-66], 158N cells treated with 7KC, 24S-OHC, and C24:0 

for 24 h, showed a loss of transmembrane mitochondrial potential (∆Ψm), revealed by an 

increase in the percentage of DiOC6(3)-negative cells (Supplementary Table 1). This was 

associated with the overproduction of O2
●-, revealed by increased percentages of DHE-positive 

cells, and with damaged plasma membranes and/or cell death induction, indicated by increased 

percentages of PI-positive cells (Supplementary Table 1).  
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BV-2 cells treated with 7KC, 24S-OHC, and C24:0 for 24 h showed slight cytotoxic effects: 

slight increases in DiOC6(3)-negative cells, DHE-positive cells, and PI-positive cells were 

observed (Supplementary Table 2). At 48 h, marked effects of 7KC were mainly found 

(Supplementary Table 3). 

In 158N cells (24 h), the analysis of the correlation between the Kv3.1b level (MFI measured by 

flow cytometry) and DiOC6(3)-negative cells, DHE- and PI-positive cells, showed a marked 

positive correlation in cells treated with 7KC and 24S-OHC, and no significant correlation with 

C24:0-treated cells (Table 1 and supplementary Fig. 2). A significant positive correlation was 

observed between the Kv3.1b level and DiOC6(3)-negative cells for BV-2 cells treated for 24 

hours with 7KC and C24:0, and between the Kv3.1b level and DiOC6(3)-negative cells, DHE-

positive cells, and PI-positive in BV-2 cells treated with 24S-OHC (Table 1 and supplementary 

Fig. 3). A significant positive correlation was also observed between the Kv3.1b level and 

DiOC6(3)-negative cells, DHE-positive cells, and PI-positive cells in BV-2 cells treated with 

7KC and 24S-OHC for 48 h whereas no correlations were found with C24:0 (Table 1 and 

supplementary Fig. 4). 

For 158N and BV-2 cells (24 h), the analysis of the correlation between [K+]i (measured by flame 

photometry) and DiOC6(3)-negative cells, DHE- and PI-positive cells showed significant positive 

correlations (Table 2 and supplementary Fig. 5 and 6). In BV-2 cells (48 h), 7KC and C24:0 

were associated with significant positive correlations between [K+]i, DiOC6(3)-negative cells, 

DHE- and PI-positive cells; no correlations were found with 24S-OHC (Table 2 and 

supplementary Fig. 7). 
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4. DISCUSSION 

Increased levels of 7KC, 24S-OHC and/or C24:0 have been reported in major neurodegenerative 

diseases: AD [17, 25, 20, 74, 75], MS [22, 76, 77, 78], Parkinson’s disease [79], X-ALD [ 23], 

Huntington's disease [80, 81], and Niemann-Pick disease [24, 25, 82]. It is therefore suspected 

that 7KC, 24S-OHC and C24:0, which are known to induce important cell dysfunctions including 

oxidative stress on nerve cells in vitro [65, 66], could contribute to favor neurodegeneration. As it 

has been reported that modulation of K+ channel activities by oxidative stress can constitute a 

significant determinant in aging and neurodegenerative diseases [83 - 88], and as modifications 

of [K+]i can contribute to inflammation [88] and to cell death induction [68, 89], which are 

hallmark of brain degeneration, the impact of 7KC, 24S-OHC and C24:0 was simultaneously 

studied on Kv3.1b channel level and [K+]i on oligodendrocytes and microglial cells involved in 

neurodegenerative diseases [90, 91]. Altogether, our data obtained on 158N murine 

oligodendrocytes and on murine microglial BV-2 cells confirm that the lipotoxicity of 7KC, 24S-

OHC and C24:0 favors a rupture of K+ homeostasia leading to increased [K+]i [ 68], and they 

establish that intracellular K+ accumulation is associated with more or less pronounced 

modulations of Kv3.1b level.  

In the present study, we described for the first time, the presence of Kv3.1b protein in both 158N 

and BV-2 cells. It is known that Kv3.1b channel expression is widespread in the nervous system; 

in adult brain, Kv3.1b mRNA is far more abundant than the Kv3.1a transcript, with both 

transcripts strongly expressed in neuronal subpopulations of the olfactory bulb, neocortex, 

hippocampus, basal nuclei, thalamus, brainstem, and cerebellum [56, 92]. Our attention focused 

on Kv3.1b channel because it was identified that Kv3.1 is expressed in significant quantities in 

oligodendrocyte cells and plays important role in their structure and function [93]. Notably, a 

reduction in myelin thickness and a decrease in the number of large-diameter axons was observed 
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in Kv3.1-knockout (Kv3.1−/− ) mice [93]. On microglia cells, it was reported that Kv3.1 channels 

is up-regulated in microglia activation and could regulate the production of pro-inflammatory 

signaling molecules such as IL-1β, IL-6, TNFα and nitric oxide [53, 94]. A rapid modulation of 

the expression of Kv3.1 channel has also been detected in Aβ1–42-treated microglia [53].  

Our study also shows that 7KC, 24S-OHC and C24:0 induce ROS overproduction and cell 

damages (loss of transmembrane mitochondrial potential, increased permeability of plasma 

membrane) on 158N murine oligodendrocytes and BV-2 microglial cells. However, the possible 

interaction of these compounds with Kv channels remained obscure, especially the impact of 

voltage-gated K+ (Kv) on cell damages. As 7KC is known to modify membrane fluidity [95 - 97], 

and as several membrane properties are modified by oxysterols, which are oxidized either on the 

steroid nucleus or on the side chain [97], we can suppose that 7KC and 24S-OHC can execute 

important functions via interactions with plasma membrane components including Kv3.1 channel 

and P2X7 receptor, leading to modifications of their activities. In the presence of C24:0, which 

could modify the phospholipid composition and consequently plasma membrane properties (as 

reported for other fatty acids) [98], we can also suppose an effect of C24:0 on the biophysical 

membrane characteristics which could further impact the properties of several membrane 

components. The present data underline that the most important up-regulation of Kv3.1b occurs 

on 158N cells under treatment with 7KC and 24S-OHC, and are less important mainly on BV-2 

cells treated with 7KC. We found an dose-dependent increased of Kv3.1b level along with 

increasing percentage of damaged cells revealed by higher percentages of DiOC6(3) negative 

cells (cells with depolarized mitochondria), DHE positive cells (cells overproducing O2
●-) and PI 

positive cells (cells with damaged plasma membrane and/or dead cells), indicating that K3.1b is 

associates to cell damages involved in cell death induction. These data underline that the 

modulation of Kv3.1b level depends on the type of nerve considered. To better explore this 
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results, a Pearson correlation test was performed to analyze whether the upregulation of Kv3.1b 

level was associated or not with marked and characteristic cytotoxic effects of 7KC, 24S-OHC 

and C24:0. Notably, on 158N cells, there was a marked correlation between Kv3.1b and the 

mitochondrial depolarization, O2
●- overproduction and plasma membrane damages under 

treatment with 7KC and 24S-OHC; with C24:0, in the absence of modulation of Kv3.1, no 

significant correlations have been shown. In BV-2 cells after 24 h, whatever the compound 

considered no significant modulation of Kv3.1b level was detected. However, with 24S-OHC, a 

significant positive correlation was observed between Kv3.1b level and the different parameters 

analyzed (percentage of DiOC6(3) negative cells, DHE positive cells, and PI positive cells); with 

7KC and C24:0 a positive correlation was only found between Kv3.1b leveland the percentage of 

DiOC6 (3) negative cells. On BV-2 cells, after 48 h, mitochondrial depolarization, O2
●- 

overproduction and cell death are strongly correlated with Kv3.1b level in presence of 7KC and 

24S-OHC. Altogether, these findings may provide evidence for a mechanistic link between 

Kv3.1b level was detected. However, with 24S-OHC, a significant positive correlation was 

observed between Kv3.1b level and the different parameters analyzed (percentage of DiOC6(3) 

negative cells, DHE positive cells, and PI positive cells); with 7KC and C24:0 a positive 

correlation was only found between Kv3.1b level and the percentage of DiOC6 (3) negative cells. 

On BV-2 cells, after 48 h, mitochondrial depolarization, O2
●- overproduction and cell death are 

strongly correlated with Kv3.1b level in presence of 7KC and 24S-OHC. Altogether, these 

findings may provide evidence for a mechanistic link between Kv3.1blevel, mitochondrial 

depolarization and oxidative stress in 158N oligodendrocyte in the presence of 7KC and 24S-

OHC, and in BV-2 microglial cells in presence of oxysterols (7KC and 24S-OHC) and C24:0.  

The idea that K+ channels play an important role in the ionic regulation of cell death has already 

been reported [99, 100]. It has been described that modulation of K+ channel activities by 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
23 

 

oxidative stress has emerged as a significant determinant in aging and neurodegeneration [83, 

84]. It has also been reported that O2
●- overproduction can reduce Kv channel activity [86, 87, 

101]. In addition, it was documented that oxysterols, depending on the nature and location of the 

oxygen substitution, have distinct impacts on the biophysical properties of membranes, including 

the formation of liquid ordered domains [102]. This supports the notion that the effects of 

oxysterols on the biophysical properties of the plasma membrane could explain, at least in part, 

some of their biological activities on Kv3.1b. It was reported that at least 14 species of K+ 

channels are involved in apoptosis of various cells [99]. An increase in the integral permeability 

of K+ channels is conventionally associated with the opening of channels leading to 

hyperpolarization of apoptotic cells, whereas depolarization was mostly observed [100, 103, 

104]. Perturbation of cellular K+ homeostasis could be a common motif in apoptosis; increase of 

intracellular K+ level, induced by valinomycin, have also been associated with autophagy in BV-

2 cells [105]. Studies, which describe the mode of valinomycin-induced cell death, report cell 

shrinkage [106, 107], chromatin condensation [107], fragmentation of the nucleus [108], pyknotic 

nuclei [106], internucleosomal DNA fragmentation in several nerve cell lines (BV-2, C6 rat 

glioma cells) and in primary mouse astrocytes and microglia cells. Currently, the cytotoxic 

effects of 7KC and 24S-OHC are associated with oxiapoptophagy (OXIdation, APOPTOsis, and 

autoPHAGY) in 158N and BV-2 cells [66, 109]. Depending on the cell line, oxiapoptophagy is 

associated or not with modulation of Ca2+ homeostasis [41, 110]. However, the impact of 7KC, 

24S-OHC and C24:0 on the intracellular K+ homeostasis is unknown. Our data establish that 

these compounds increased [K+]i in a dose-dependent manner in 158N and BV-2 cells. The 

highest intracellular K+ levels were detected on 158N cells in presence of 7KC, 24S-OHC and 

C24:0 cells and is positively correlated with mitochondrial depolarization, excessive production 

of O2
●- and increased plasma membrane permeability which are associated with lipotoxicity. This 
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lead us to speculate that K+ retention could contribute to 7KC-, 24S-OHC- and C24:0-induced 

cytotoxic effects. Noteworthy, significant positive correlation between [K+]i and Kv3.1b level 

have been also observed suggesting that regulation of K+ homeostasis in oligodendrocytes and 

microglial cells could involve Kv3.1b.  

These findings provide compelling evidences that modulation of Kv3.1b, and intracellular K+ 

level are critically linked to various cytotoxic effects triggered by oxysterols (7KC, 24S-OHC) 

and C24:0 including oxidative stress, mitochondrial dysfunctions and plasma membrane damages 

on 158N oligodendrocytes and BV-2 microglial cells (Fig. 6). This may provide a mechanistic 

link to better understand the relationships between K+ homeostasis, Kv3.1b level, oxidative 

stress, mitochondrial activity, and plasma membrane damages in oligodendrocyte and microglial 

cells which are affected in numerous neurodegenerative diseases. These data also support the 

notion that the lipid environment could affect K+ channel functionality, and they suggest that 

increased levels of 7KC, 24S-OHC, and C24:0, which are often found in the body fluids and 

brain of patients with neurodegenerative disease, could impact nerve impulses and nerve cell 

functions. Therefore, it can be supposed that the regulation of K+ homeostasis, could constitute a 

new pharmacological target to prevent neurodegeneration.  
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FIGURE LEGENDS 

Fig. 1. Analysis of the expression of the Kv3.1 voltage-gated potassium channel in 158N 

murine oligodendrocytes and BV-2 murine microglial cells. A: Flow cytometric analysis of 

the expression of Kv3.1 on 158N and BV-2 cells; B: immunofluorescence microscopy; Kv3.1 

expression (green); the nuclei were counterstained with Hoechst 33342 (blue); C: analysis of 

Kv3.1b protein expression by Western blot in 158N and BV-2 cells; a single band at around 66 

kDa corresponding to the core Kv3.1b was detected.  

Fig. 2. Analysis of Kv3.1b level in 158N murine oligodendrocytes treated with 7KC, 24S-

OHC and C24:0. Subconfluent 158N cells (previously cultured for 24 h) were further incubated 

for 24 h without or with 7KC (2.5 to 25 µM), 24S-OHC (2.5 to 25 µM), and C24:0 (1 to 20 µM) 

as well as with EtOH (0.005 to 0.05%; used as vehicle for 7KC and 24S-OHC) and with α-

cyclodextrin (0.05 to 1 mM; used as vehicle for C24:0). Kv3.1b level was evaluated by flow 

cytometry (data were expressed as % of control (untreated cells)) (A) and western blotting (data 

were normalized to β-actin used as reference protein and expressed as % control) (B). Data 

shown are mean ± SD from three independent experiments. Statistical analyses were realized 
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with ANOVA (Tukey’s multiple comparisons test): # P < 0.05 vehicle / control; * P < 0.05 

oxysterols or tetracosanoic acid / vehicle.  

Fig. 3. Analysis of Kv3.1b level in BV-2 murine microglial cells treated with 7KC, 24S-OHC 

and C24:0. BV-2 cells previously cultured for 24 h were further incubated for 24 and 48 h 

without or with 7KC (2.5 to 25 µM), 24S-OHC (2.5 to 25 µM) and C24:0 (1 to 20 µM) as well as 

with EtOH (0.005 to 0.05%; used as vehicle for 7KC and 24S-OHC) and with α-cyclodextrin 

(0.05 to 1 mM; used as vehicle for C24:0). Kv3.1b level (MFI) was evaluated by flow cytometry 

after 24 h (A) and 48 h (B). Data are expressed as % of control (untreated cells). Data shown are 

mean ± SD from three independent experiments. Statistical analyses were realized with ANOVA 

(Tukey’s multiple comparisons test): # P < 0.05 vehicle / control; * P < 0.05 oxysterols or 

tetracosanoic acid / vehicle.  

 
Fig. 4. Effects of 7KC, 24S-OHC and C24:0 on intracellular K + concentration ([K+]i) 

evaluated with flame photometry. 158N and BV-2 cells previously cultured for 24 h were 

further cultured without or with 7KC (2.5 to 25 µM), 24S-OHC (2.5 to 25 µM), and C24:0 (1 to 

20 µM) as well as with EtOH (0.005 to 0.05%; used as vehicle for 7KC and 24S-OHC) and with 

α-cyclodextrin (0.05 to 1 mM; used as vehicle for C24:0). 4-AP was used as positive control to 

induce intracellular K+ accumulation. [K+]i was measured by flame photometry after 24 h of 

treatment in 158N cells (A), or after 24 h (B) and 48 h of treatment (C) in BV-2 cells. Data are 

expressed as % of control (untreated cells). Values are mean ± SD of three independent 

experiments. Statistical analyses were realized with ANOVA (Tukey’s multiple comparisons 

test). Significant differences are indicated as: # P < 0.05 vehicle (or 4-AP) / control; * P < 0.05, 

vehicle / 7KC, 24S-OHC or C24:0.  
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Fig. 5. Pearson’s correlation between Kv3.1b level and intracellular K + concentration 

([K +]i) evaluated in 158 N murine oligodendrocytes and BV-2 murine microglial cells 

treated with 7KC, 24S-OHC or C24:0. 158N (a-c) and BV-2 (d-i) cells previously cultured for 

24 h were further cultured (for 24 h (158N) or 24-48 h (BV-2)) without or with 7KC (2.5 to 25 

µM), 24S-OHC (2.5 to 25 µM), and C24:0 (1 to 20 µM) as well as with EtOH (0.005 to 0.05 %; 

used as vehicle for 7KC and 24S-OHC) and with α-cyclodextrin (0.05 to 1 mM; used as vehicle 

for C24:0). Kv3.1b levellevel was evaluated by flow cytometry (MFI) and [K+]i was determined 

by flame photometry. Data are expressed as % of control (untreated cells). The correlations were 

calculated with the Pearson’s correlation test. 

 

Fig. 6. Shematic representation of the contribution of Kv3.1 in 7KC -, 24S-OHC - and 

C24:0 - induced cell death. Under treatment with 7KC, 24S-OHC and C24:0, an increased of the 

intracellular K+ concentration [K+]i is observed associated with plasma membrane changes, ROS 

overproduction and loss of transmembrane mitochondrial potential (∆Ψm). Under treatment with 

7KC and 24S-OHC, an overpression of Kv3.1, that could set up to prevent the increase of [K+]i, 

is observed. However, in the presence of C24:0, no increase of Kv3.1 level occurs. This finding 

provides evidence for a potential link between Kv3.1 level (mainly Kv3.1b), intracellular K+ 

accumulation and cell death induction in the presence of 7KC, 24S-OHC and C24:0. However, 

our data also show that 7KC, 24S-OHC and C24:0 simultaneously activate P2X7 receptor which 

leads to Na+ and Ca2+ influx, and K+ efflux. It is therefore questionable whether the increased 

[K+]i under the action of 7KC, 24S-OHC and C24:0 could be the resultant of several concomitant 

activities of these molecules on different targets involved in the control of K+ homeostasis. 
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Supplementary Figure 1: 7-ketocholesterol (A) and 24S-OHC (B) metabolites (according to 

Prof. William J. Griffiths and Dr Yuqin Wang, Univ. Swansea, UK) 

 

Supplementary Figure 2: Pearson’s correlation between Kv3.1b level, the percentage of 

DiOC6(3)-negative cells, and DHE- and PI-positive cells in 158N murine oligodendrocytes 

treated for 24 h with 7-ketocholesterol, 24S-hydroxycholesterol or C24:0. Sub-confluent 

158N cells (previously cultured for 24 h) were further incubated for 24 h without or with 7KC 

(2.5 to 25 µM), 24S-OHC (2.5 to 25 µM), and C24:0 (1 to 20 µM) as well as with EtOH (0.005 

to 0.05%; used as vehicle for 7KC and 24S-OHC) and with α-cyclodextrin (0.05 to 1 mM; used 

as vehicle for C24:0). Kv3.1b level (MFI) as well as the percentage DiOC6(3)-negative cells, and 

DHE- and PI-positive cells were evaluated by flow cytometry. The correlations were calculated 

with the Pearson’s correlation test. 

 

Supplementary Figure 3: Pearson’s correlation between Kv3.1b level, the percentage of 

DiOC6(3)-negative cells, and DHE- and PI-positive cells in BV-2 murine microglial cells 

treated for 24 h with 7-ketocholesterol, 24S-hydroxycholesterol or C24:0. BV-2 cells 

(previously cultured for 24 h) were further incubated for 24 h without or with 7KC (2.5 to 25 

µM), 24S-OHC (2.5 to 25 µM), and C24:0 (1 to 20 µM) as well as with EtOH (0.005 to 0.05%; 

used as vehicle for 7KC and 24S-OHC) and with α-cyclodextrin (0.05 to 1 mM; used as vehicle 

for C24:0). Kv3.1b level (MFI) as well as the percentage of DiOC6(3)-negative cells, and DHE- 

and PI-positive cells were evaluated by flow cytometry. The correlations were calculated with the 

Pearson’s correlation test. 
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Supplementary Figure 4: Pearson’s correlation between Kv3.1b level, the percentage of 

DiOC6(3)-negative cells, and DHE- and PI-positive cells in BV-2 murine microglial cells 

cultured for 48 h with 7-ketocholesterol, 24S-hydroxycholesterol or C24:0. BV-2 cells 

(previously cultured for 24 h) were further cultured for 48 h without or with 7KC (2.5 to 25 µM), 

24S-OHC (2.5 to 25 µM), and C24:0 (1 to 20 µM) as well as with EtOH (0.005 to 0.05%; used as 

vehicle for 7KC and 24S-OHC) and with α-cyclodextrin (0.05 to 1 mM; used as vehicle for 

C24:0). Kv3.1b level (MFI) as well as the percentage DiOC6(3)-negative cells, and DHE- and PI-

positive cells were evaluated by flow cytometry. The correlations were calculated with Pearson’s 

correlation test. 

 

Supplementary Figure 5: Pearson’s correlation between intracellular K + concentration 

([K +]i), the percentage of DiOC6(3)-negative cells, and DHE- and PI-positive cells in 158 N 

murine oligodendrocytes cultured for 24 h with 7-ketocholesterol, 24S-hydroxycholesterol 

or C24:0. Subconfluent 158N cells (previously cultured for 24 h) were further cultured for 24 h 

without or with 7KC (2.5 to 25 µM), 24S-OHC (2.5 to 25 µM), and C24:0 (1 to 20 µM) as well 

as with EtOH (0.005 to 0.05%; used as vehicle for 7KC and 24S-OHC) and with α-cyclodextrin 

(0.05 to 1 mM; used as vehicle for C24:0). [K+]i was determined by flame photometry; the 

percentages of DiOC6(3)-negative cells, and DHE- and PI-positive cells were evaluated by flow 

cytometry. The correlations were calculated with Pearson’s correlation test. 

Supplementary Figure 6: Pearson’s correlation between intracellular K + concentration 

([K +]i), the percentage of DiOC6(3)-negative cells, and DHE- and PI-positive cells in BV-2 

murine microglial cells treated for 24 h with 7-ketocholesterol, 24S-hydroxycholesterol or 

C24:0. BV-2 cells (previously cultured for 24 h) were further cultured for 24 h without or with 
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7KC (2.5 to 25 µM), 24S-OHC (2.5 to 25 µM), and C24:0 (1 to 20 µM) as well as with EtOH 

(0.005 to 0.05%; used as vehicle for 7KC and 24S-OHC) and with α-cyclodextrin (0.05 to 1 mM; 

used as vehicle for C24:0). [K+]i was determined by flame photometry; the percentages of 

DiOC6(3)-negative cells, and DHE- and PI-positive cells were evaluated by flow cytometry. The 

correlations were calculated with Pearson’s correlation test. 

Supplementary Figure 7: Pearson’s correlation between intracellular K + concentration 

([K +]i), the percentage of DiOC6(3)-negative cells, and DHE- and PI-positive cells in BV-2 

murine microglial cells treated for 48 h with 7-ketocholesterol, 24S-hydroxycholesterol or 

C24:0. BV-2 cells (previously cultured for 24 h) were further cultured for 48 h without or with 

7KC (2.5 to 25 µM), 24S-OHC (2.5 to 25 µM), and C24:0 (1 to 20 µM) as well as with EtOH 

(0.005 to 0.05%; used as vehicle for 7KC and 24S-OHC) and with α-cyclodextrin (0.05 to 1 mM; 

used as vehicle for C24:0). [K+]i was determined by flame photometry; the percentages of 

DiOC6(3)-negative cells, and DHE- and PI-positive cells were evaluated by flow cytometry. The 

correlations were calculated with Pearson’s correlation test. 

 

Graphical abstract 

Our data establish that 7KC, 24S-OHC and C24:0 increase intracellular K+ concentration ([K+]i) 

in both 158N and BV-2 cells. The highest [K+]i were detected on 158N cells. Increased level of 

Kv3.1b was shown on 158N cells under treatment with 7KC and 24S-OHC but not with C24:0. 

This effect was less important on BV-2 cells. Positive correlations between Kv3.1b level and 

[K+]i were observed. In addition, the [K+]i and the level of Kv3.1b along with increasing 

percentage cells with depolarized mitochondria, ROS overproducing cells and dead cells. 
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Table 1: Pearson’s correlation between Kv3.1b expression, percentage of DiOC6(3) 
negative cells, and percentage of DHE and PI positive cells.  

 

Cells 
and times of treatment 

 
Kv3.1b 
levels 

          % DiOC6(3)                      % DHE                         %IP 
         negative cells              positive cells                   positive cells 

r P r P r P 

 
 
 

158N (24 h) 

7KC 0.8 0.0002 0.91 <0.0001 0.75 0.0007 

24 S-OHC 0.95 <0.0001 0.85 <0.0001 0.9 <0.0001 

C24:0 0.2 NS -0.05 NS 0.11 NS 

 
 
 

BV-2 (24 h) 
 

7KC 0.73 0.0013 0.42 NS 0.4 NS 

24 S-OHC 0.55 0.02 0.71 0.0019 0.63 0.0087 

C24:0 0.57 0.007 0.41 NS 0.31 NS 

 
 
 

BV-2 (48 h) 
 
 
 

7KC 0.6 0.01 0.72 0.0015 0.7 0.002 

24 S-OHC 0.79 0.0002 0.79 0.0002 0.7 0.0015 

C24:0 0.2 NS -0.24 NS 0.032 NS 

Bezine M et al. 
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Table 2: Pearson’s correlation between intracellular potassium concentration [K+]i, 
percentage of DiOC6(3) negative cells, and percentage of DHE and PI positive cells.  

 

Cells 
and times of treatment 

[K+]i  
 

       % DiOC6(3)                  % DHE                                 %IP 
     negative cells           positive cells                   positive cells 

r P r P r P 

 
 

 
                  158N (24 h) 

7KC 0.92 <0.0001 0.94 <0.0001 0.81 <0.0001 

24 S-OHC 0.83 <0.0001 0.86 <0.0001 0.86 <0.0001 

C24:0 0.89 <0.0001 0.8 <0.0001 0.8 0.0002 

 
 
 

BV-2 (24 h) 
 

7KC 0.73 0.012 0.92 0.0018 0.85 <0.0001 

24 S-OHC 0.86 0.0003 0.71 0.0018 0.89 <0.0001 

C24:0 0.81 0.001 0.64 0.0019 0.84 0.0002 

 
 
 

BV-2 (48 h) 
 

7KC 0.49 0.04 0.5 0.03 0.61 0.011 

24 S-OHC 0.06 NS -0.14 NS 0.03 NS 

C24:0 0.75 <0.0001 0.47 0.033 0.8 <0.0001 

Bezine M et al. 
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“Modulation of Kv3.1b potassium channel level and intracellular potassium concentration in 

158N murine oligodendrocytes and BV-2 murine microglial cells treated with 7-ketocholesterol, 

24S-hydroxycholesterol or tetracosanoicacid (C24:0)” by Maryem Bezine et al. 

 

 

 

• Nerve cells, 158N and BV-2, express Kv3.1b potassium channel 

 

• 7-ketocholesterol, 24S-hydroxycholesterol, and C24:0 modulate Kv3.1b level 

 

• 7-ketocholesterol, 24S-hydroxycholesterol, and C24:0 modulate intracellular K+ concentration 

 

• Positive correlations between Kv3.1b level, and K+ accumulation with cell death dysfunctions 


