S. Longhi, V. Receveur-brechot, D. Karlin, K. Johansson, H. Darbon et al., The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein, J. Biol. Chem, vol.278, pp.18638-18648, 2003.

M. H. Heggeness, A. Scheid, and P. W. Choppin, Conformation of the helical nucleocapsids of paramyxoviruses and vesicular stomatitis virus: Reversible coiling and uncoiling induced by changes in salt concentration, Proc. Natl. Acad. Sci, vol.77, pp.2631-2635, 1980.

M. H. Heggeness, A. Scheid, and P. W. Choppin, The relationship of conformational changes in the Sendai virus nucleocapsid to proteolytic cleavage of the NP polypeptide, Virology, vol.114, pp.555-562, 1981.

D. Karlin, S. Longhi, and B. Canard, Substitution of two residues in the measles virus nucleoprotein results in an impaired self-association, Virology, vol.302, pp.420-432, 2002.

R. Jensen, M. Communie, G. Ribeiro, E. D. Jr, N. Martinez et al., Intrinsic disorder in measles virus nucleocapsids, Proc. Natl. Acad. Sci, vol.108, pp.9839-9844, 2011.

I. Gutsche, A. Desfosses, G. Effantin, W. L. Ling, M. Haupt et al., Near-atomic cryo-EM structure of the helical measles virus nucleocapsid, Science, vol.348, pp.704-707, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162615

J. Bourhis, K. Johansson, V. Receveur-bréchot, C. J. Oldfield, A. K. Dunker et al., The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner, Virus Res, vol.99, pp.157-167, 2004.

J. M. Bourhis, V. Receveur-bréchot, M. Oglesbee, X. Zhang, M. Buccellato et al., The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded, Protein Sci, vol.14, 1975.

K. Johansson, J. M. Bourhis, V. Campanacci, C. Cambillau, B. Canard et al., Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein, J. Biol. Chem, vol.278, pp.44567-44573, 2003.

R. L. Kingston, D. J. Hamel, L. S. Gay, F. W. Dahlquist, and B. W. Matthews, Structural basis for the attachment of a paramyxoviral polymerase to its template, Proc. Natl. Acad. Sci, vol.101, pp.8301-8306, 2004.

S. Longhi, L. M. Bloyet, S. Gianni, and D. Gerlier, How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication, Cell. Mol. Life Sci, vol.74, pp.3091-3118, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802834

A. K. Dunker, M. S. Cortese, P. Romero, L. M. Iakoucheva, and V. N. Uversky, Flexible nets, FEBS J, vol.272, pp.5129-5148, 2005.

V. N. Uversky, C. J. Oldfield, and A. K. Dunker, Showing your ID: Intrinsic disorder as an ID for recognition, regulation and cell signaling, J. Mol. Recognit, vol.18, pp.343-384, 2005.

C. Haynes, C. J. Oldfield, F. Ji, N. Klitgord, M. E. Cusick et al., Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes, PLoS Comput. Biol, 2006.

M. Iwasaki, M. Takeda, Y. Shirogane, Y. Nakatsu, T. Nakamura et al., The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein, J. Virol, vol.83, pp.10374-10383, 2009.

X. Zhang, C. Glendening, H. Linke, C. L. Parks, C. Brooks et al., Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein, J. Virol, vol.76, pp.8737-8746, 2002.

X. Zhang, J. M. Bourhis, S. Longhi, T. Carsillo, M. Buccellato et al., Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus, Virology, vol.337, pp.162-174, 2005.

M. Couturier, M. Buccellato, S. Costanzo, J. M. Bourhis, Y. Shu et al., High Affinity Binding between Hsp70 and the C-Terminal Domain of the Measles Virus Nucleoprotein Requires an Hsp40 Co-Chaperone, J. Mol. Recognit, vol.23, pp.301-315, 2010.

H. Sato, M. Masuda, R. Miura, M. Yoneda, and C. Kai, Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal, Virology, vol.352, pp.121-130, 2006.

B. R. Tenoever, M. J. Servant, N. Grandvaux, R. Lin, and J. Hiscott, Recognition of the Measles Virus Nucleocapsid as a Mechanism of IRF-3 Activation, J. Virol, vol.76, pp.3659-3669, 2002.

M. Colombo, J. M. Bourhis, C. Chamontin, C. Soriano, S. Villet et al., The interaction between the measles virus nucleoprotein and the Interferon Regulator Factor 3 relies on a specific cellular environment, Virol. J, vol.6, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02475099

D. Laine, J. Bourhis, S. Longhi, M. Flacher, L. Cassard et al., Measles virus nucleoprotein induces cell proliferation arrest and apoptosis through NTAIL/NR and NCORE/FcgRIIB1 interactions, respectively, J. Gen. Virol, vol.86, pp.1771-1784, 2005.

D. Laine, M. Trescol-biémont, S. Longhi, G. Libeau, J. Marie et al., Measles virus nucleoprotein binds to a novel cell surface receptor distinct from FcgRII via its C-terminal domain: Role in MV-induced immunosuppression, J. Virol, vol.77, pp.11332-11346, 2003.

A. Watanabe, M. Yoneda, F. Ikeda, A. Sugai, H. Sato et al., Peroxiredoxin 1 is required for efficient transcription and replication of measles virus, J. Virol, vol.85, pp.2247-2253, 2011.

B. P. De and A. K. Banerjee, Involvement of actin microfilaments in the transcription/replication of human parainfluenza virus type 3: Possible role of actin in other viruses, Microsc. Res. Tech, vol.47, pp.114-123, 1999.

S. A. Moyer, S. C. Baker, and S. M. Horikami, Host cell proteins required for measles virus reproduction, J. Gen. Virol, vol.71, pp.775-783, 1990.

J. Habchi, S. Blangy, L. Mamelli, M. Ringkjobing-jensen, M. Blackledge et al., Characterization of the interactions between the nucleoprotein and the phosphoprotein of Henipaviruses, J. Biol. Chem, vol.286, pp.13583-13602, 2011.

M. Dosnon, D. Bonetti, A. Morrone, J. Erales, E. Di-silvio et al., Demonstration of a folding after binding mechanism in the recognition between the measles virus NTAIL and X domains, ACS Chem. Biol, vol.10, pp.795-802, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439003

S. Gely, D. F. Lowry, C. Bernard, M. Ringkjobing-jensen, M. Blackledge et al., Solution structure of the C-terminal X domain of the measles virus phosphoprotein and interaction with the intrinsically disordered C-terminal domain of the nucleoprotein, J. Mol. Recognit, vol.23, pp.435-447, 2010.

A. D'urzo, A. Konijnenberg, G. Rossetti, J. Habchi, J. Li et al., Molecular Basis for Structural Heterogeneity of an Intrinsically Disordered Protein Bound to a Partner by Combined ESI-IM-MS and Modeling, J. Am. Soc. Mass Spectrom, vol.26, pp.472-481, 2015.

D. Bonetti, C. Camilloni, L. Visconti, S. Longhi, M. Brunori et al., Identification and Structural Characterization of an Intermediate in the Folding of the Measles Virus X Domain, J. Biol. Chem, vol.291, pp.10886-10892, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439066

J. Habchi, L. Mamelli, H. Darbon, and S. Longhi, Structural Disorder within Henipavirus Nucleoprotein and Phosphoprotein: From Predictions to Experimental Assessment, PLoS ONE, vol.5, 2010.

G. Communie, J. Habchi, F. Yabukarski, D. Blocquel, R. Schneider et al., Atomic resolution description of the interaction between the nucleoprotein and phosphoprotein of Hendra virus, PLoS Pathog, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01243590

M. Fuxreiter, I. Simon, P. Friedrich, and P. Tompa, Preformed structural elements feature in partner recognition by intrinsically unstructured proteins, J. Mol. Biol, vol.338, pp.1015-1026, 2004.

B. Morin, J. M. Bourhis, V. Belle, M. Woudstra, F. Carrière et al., Assessing induced folding of an intrinsically disordered protein by site-directed spin-labeling EPR spectroscopy, J. Phys. Chem. B, vol.110, pp.20596-20608, 2006.

V. Belle, S. Rouger, S. Costanzo, E. Liquiere, J. Strancar et al., Mapping alpha-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by site-directed spin-labeling EPR spectroscopy, Proteins Struct. Funct. Bioinform, vol.73, pp.973-988, 2008.

M. Martinho, J. Habchi, Z. El-habre, L. Nesme, B. Guigliarelli et al., Assessing induced folding within the intrinsically disordered C-terminal domain of the Henipavirus nucleoproteins by site directed spin labeling EPR spectroscopy, J. Biomol. Struct. Dyn, vol.31, pp.453-471, 2013.

L. Baronti, J. Erales, J. Habchi, I. C. Felli, R. Pierattelli et al., Dynamics of the intrinsically disordered C-terminal domain of the Nipah virus nucleoprotein and interaction with the X domain of the phosphoprotein as unveiled by NMR spectroscopy, ChemBioChem, vol.16, pp.268-276, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439006

Y. Wang, X. Chu, S. Longhi, P. Roche, W. Han et al., Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein, Proc. Natl. Acad. Sci, vol.110, pp.3743-3752, 2013.

X. Shang, W. Chu, X. Chu, L. Xu, S. Longhi et al., Exploration of nucleoprotein alpha-MoRE and XD interactions of Nipah and Hendra viruses, J. Mol. Model, vol.24, 2018.

D. Bonetti, F. Troilo, A. Toto, M. Brunori, S. Longhi et al., Analyzing the folding and binding steps of an intrinsically disordered protein by protein engineering, vol.56, pp.3780-3786, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802841

V. Belle, S. Rouger, S. Costanzo, S. Longhi, and A. Fournel, Site-directed spin labeling EPR spectroscopy, Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation
URL : https://hal.archives-ouvertes.fr/hal-01596569

V. N. Uversky and S. Longhi, , 2010.

D. Blocquel, J. Habchi, A. Gruet, S. Blangy, and S. Longhi, Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies, Mol. Biosyst, vol.8, pp.392-410, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02066322

F. Troilo, C. Bignon, S. Gianni, M. Fuxreiter, and S. Longhi, Experimental characterization of fuzzy protein assemblies: Interactions of paramyxoviral NTAIL domains with their functional partners, Methods Enzymol, vol.611, pp.137-192, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02337719

P. Tompa and M. Fuxreiter, Fuzzy complexes: Polymorphism and structural disorder in protein-protein interactions, Trends Biochem. Sci, vol.33, pp.2-8, 2008.

M. Fuxreiter, Fuzziness: Linking regulation to protein dynamics, Mol. Biosyst, vol.8, pp.168-177, 2012.

M. Fuxreiter, Fuzziness in protein interactions-A historical perspective, J. Mol. Biol, vol.430, pp.2278-2287, 2018.

M. Fuxreiter, Fold or not to fold upon binding-Does it really matter?, Curr. Opin. Struct. Biol, vol.54, pp.19-25, 2018.

V. Ozenne, F. Bauer, L. Salmon, J. R. Huang, M. R. Jensen et al., Flexible-meccano: A tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables, Bioinformatics, vol.28, pp.1463-1470, 2012.

T. Carsillo, X. Zhang, D. Vasconcelos, S. Niewiesk, and M. Oglesbee, A single codon in the nucleocapsid protein C terminus contributes to in vitro and in vivo fitness of Edmonston measles virus, J. Virol, vol.80, pp.2904-2912, 2006.

M. Oglesbee, Nucleocapsid protein interactions with the major inducible heat shock protein, Measles Virus Nucleoprotein

S. Longhi and . Ed, , pp.53-98, 2007.

M. J. Oglesbee, H. Kenney, T. Kenney, and S. Krakowka, Enhanced production of morbillivirus gene-specific RNAs following induction of the cellular stress response in stable persistent infection, Virology, vol.192, pp.556-567, 1993.

M. J. Oglesbee, Z. Liu, H. Kenney, and C. L. Brooks, The highly inducible member of the 70 kDa family of heat shock proteins increases canine distemper virus polymerase activity, J. Gen. Virol, vol.77, pp.2125-2135, 1996.

D. Vasconcelos, E. Norrby, and M. Oglesbee, The cellular stress response increases measles virus-induced cytopathic effect, J. Gen. Virol, vol.79, pp.1769-1773, 1998.

D. Y. Vasconcelos, X. H. Cai, and M. J. Oglesbee, Constitutive overexpression of the major inducible 70 kDa heat shock protein mediates large plaque formation by measles virus, J. Gen. Virol, vol.79, pp.2239-2247, 1998.

S. Longhi and M. Oglesbee, Structural disorder within the measles virus nucleoprotein and phosphoprotein, Protein Peptide Lett, vol.17, pp.961-978, 2010.

C. G. Wilson, T. J. Magliery, and L. Regan, Detecting protein-protein interactions with GFP-fragment reassembly, Nat. Methods, vol.1, pp.255-262, 2004.

A. Gruet, M. Dosnon, A. Vassena, V. Lombard, D. Gerlier et al., Dissecting partner recognition by an intrinsically disordered protein using descriptive random mutagenesis, J. Mol. Biol, vol.425, pp.3495-3509, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02475076

M. E. Jackrel, A. L. Cortajarena, T. Y. Liu, and L. Regan, Screening libraries to identify proteins with desired binding activities using a split-GFP reassembly assay, ACS Chem. Biol, vol.5, pp.553-562, 2010.

T. J. Magliery, C. G. Wilson, W. Pan, D. Mishler, I. Ghosh et al., Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: Scope and mechanism, J. Am. Chem. Soc, vol.127, pp.146-157, 2005.

A. Gruet, M. Dosnon, D. Blocquel, J. Brunel, D. Gerlier et al., Fuzzy regions in an intrinsically disordered protein impair protein-protein interactions, FEBS J, vol.283, pp.576-594, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439076

P. Cassonnet, C. Rolloy, G. Neveu, P. O. Vidalain, T. Chantier et al., Benchmarking a luciferase complementation assay for detecting protein complexes, Nat. Methods, vol.8, pp.990-992, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01971619

N. D. Keul, K. Oruganty, E. T. Schaper-bergman, N. R. Beattie, W. E. Mcdonald et al., The entropic force generated by intrinsically disordered segments tunes protein function, Nature, 2018.

Z. Dosztanyi, V. Csizmok, P. Tompa, and I. Simon, IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content, Bioinformatics, vol.21, pp.3433-3434, 2005.

M. Y. Kim, Y. Shu, T. Carsillo, J. Zhang, L. Yu et al., Hsp70 and a novel axis of type I interferon-dependent antiviral immunity in the measles virus-infected brain, J. Virol, vol.87, pp.998-1009, 2013.

C. Bignon, F. Troilo, S. Gianni, and S. Longhi, Partner-mediated polymorphism of an intrinsically disordered protein, J. Mol. Biol, vol.430, pp.2493-2507, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01802951

D. Reichmann, Y. Xu, C. M. Cremers, M. Ilbert, R. Mittelman et al., Order out of disorder: Working cycle of an intrinsically unfolded chaperone, Cell, vol.148, pp.947-957, 2012.

K. T. O'neil and W. F. Degrado, A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids, Science, vol.250, pp.646-651, 1990.

D. Kolakofsky, P. Le-mercier, F. Iseni, and D. Garcin, Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis, Virology, vol.318, pp.463-473, 2004.

V. D. Thakkar, R. M. Cox, B. Sawatsky, . Da-fontoura, R. Budaszewski et al., The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity, J. Virol, vol.92, 2018.

J. Brunel, D. Chopy, M. Dosnon, L. M. Bloyet, P. Devaux et al., Sequence of events in measles virus replication: Role of phosphoprotein-nucleocapsid interactions, J. Virol, vol.88, pp.10851-10863, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01911320

L. Bloyet, J. Brunel, M. Dosnon, V. Hamon, J. Erales et al., Modulation of re-initiation of measles virus transcription at intergenic regions by PXD to NTAIL binding strength, PLoS Pathog, vol.12, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01911531

Y. Shu, J. Habchi, S. Costanzo, A. Padilla, J. Brunel et al., Plasticity in structural and functional interactions between the phosphoprotein and nucleoprotein of measles virus, J. Biol. Chem, vol.287, pp.11951-11967, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02475081

H. Wang, L. Bu, C. Wang, Y. Zhang, H. Zhou et al., The Hsp70 inhibitor 2-phenylethynesulfonamide inhibits replication and carcinogenicity of Epstein-Barr virus by inhibiting the molecular chaperone function of Hsp70, Cell Death Dis, vol.9, 2018.

J. I. Leu, J. Pimkina, A. Frank, M. E. Murphy, and D. L. George, A small molecule inhibitor of inducible heat shock protein 70, Mol. Cell, vol.36, pp.15-27, 2009.

M. Granato, V. Lacconi, M. Peddis, L. V. Lotti, L. Di-renzo et al., HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma, Cell Death Dis, 2013.