, Investigación y Tecnología Agraria y Alimentaria

P. Orcid-maría, . Jiménez-de, and . Bagüés,

, Sébastien Lyonnais

S. A. Dahouk,

D. De-biase,

, Alessandra Occhialini

G. Pappas, P. Papadimitriou, and N. Akritidis, The new global map of human brucellosis, Lancet Infect Dis, vol.6, pp.91-99, 2006.

A. Dahouk, S. Köhler, S. Occhialini, and A. , Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts, Sci Rep, vol.7, p.44420, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01128089

F. Aujoulat, F. Roger, and A. Bourdier, From environment to man: genome evolution and adaptation of human opportunistic bacterial pathogens, Genes (Basel), vol.3, pp.191-232, 2012.

M. A. Damiano, D. Bastianelli, A. Dahouk, and S. , Glutamate decarboxylase-dependent acid resistance in Brucella spp.: distribution and contribution to fitness under extremely acidic conditions, Appl Environ Microbiol, vol.81, pp.578-586, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142767

L. Freddi, M. A. Damiano, and L. Chaloin, The glutaminase-dependent system confers extreme acid resistance to new species and atypical strains of Brucella, Front Microbiol, vol.8, p.2236, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01868348

E. Pennacchietti, D. 'alonzo, C. , and F. L. , The glutaminase-dependent acid resistance system: qualitative and quantitative assays and analysis of its distribution in enteric bacteria, Front Microbiol, vol.9, p.2869, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02352349

P. F. Soler-llorens, C. R. Quance, and S. D. Lawhon, A Brucella spp. isolate from a Pac-Man frog (Ceratophrys ornata) reveals characteristics departing from classical brucellae, Front Cell Infect Microbiol, vol.6, p.116, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01994286

H. C. Scholz, Z. Hubalek, and I. Sedlacek, Brucella microti sp. nov., isolated from the common vole Microtus arvalis, Int J Syst Evol Microbiol, vol.58, pp.375-382, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00220401

M. Jay, G. Girault, and L. Perrot, Phenotypic and molecular characterization of Brucella microti-like bacteria from a domestic marsh frog (Pelophylax ridibundus), Front Vet Sci, vol.5, p.283, 2018.

A. R. Wattam, T. J. Inzana, and K. P. Williams, Comparative genomics of early-diverging Brucella strains reveals a novel lipopolysaccharide biosynthesis pathway, MBio, vol.3, pp.246-258, 2012.

J. De-bagüés, M. P. Ouahrani-bettache, S. Quintana, and J. F. , The new species Brucella microti replicates in macrophages and causes death in murine models of infection, J Infect Dis, vol.202, pp.3-10, 2010.

N. Hanna, J. De-bagüés, M. P. Ouahrani-bettache, and S. , The virB operon is essential for lethality of Brucella microti in the Balb/c murine model of infection, J Infect Dis, vol.203, pp.1129-1135, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02424986

J. De-bagüés, M. P. Iturralde, M. Arias, and M. A. , The new strains Brucella inopinata BO1 and Brucella species 83-210 behave biologically like classic infectious Brucella species and cause death in murine models of infection, J Infect Dis, vol.210, pp.467-472, 2014.

M. S. Zygmunt, I. Jacques, and N. Bernardet, Lipopolysaccharide heterogeneity in the atypical group of novel emerging Brucella species, Clin Vaccine Immunol, vol.19, pp.1370-1373, 2012.

A. F. Haag, K. K. Myka, and M. F. Arnold, Importance of Lipopolysaccharide and Cyclic beta-1,2-Glucans in Brucella-Mammalian Infections, Int J Microbiol, p.124509, 2010.

N. Lapaque, I. Moriyon, and E. Moreno, Brucella lipopolysaccharide acts as a virulence factor, Curr Opin Microbiol, vol.8, pp.60-66, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00165710

J. A. Smith, Brucella Lipopolysaccharide and pathogenicity: the core of the matter, Virulence, vol.9, pp.379-382, 2018.

I. Moriyon and I. Lopez-goni, Structure and properties of the outer membranes of Brucella abortus and Brucella melitensis, Int Microbiol, vol.1, pp.19-26, 1998.

D. R. Bundle, J. W. Cherwonogrodzky, and M. A. Gidney, Definition of Brucella A and M epitopes by monoclonal typing reagents and synthetic oligosaccharides, Infect Immun, vol.57, pp.2829-2836, 1989.

M. S. Zygmunt, D. R. Bundle, and N. V. Ganesh, Monoclonal antibody-defined specific C epitope of Brucella O-polysaccharide revisited, Clin Vaccine Immunol, vol.22, pp.979-982, 2015.

N. C. Hull and B. A. Schumaker, Comparisons of brucellosis between human and veterinary medicine, Infect Ecol Epidemiol, vol.8, p.1500846, 2018.

J. Godfroid, H. C. Scholz, and T. Barbier, Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century, Prev Vet Med, vol.102, pp.118-131, 2011.

F. Porte, J. P. Liautard, and S. Köhler, Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages, Infect Immun, vol.67, pp.4041-4047, 1999.

J. Celli, C. De-chastellier, and D. M. Franchini, Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum, J Exp Med, vol.198, pp.545-556, 2003.

F. Porte, A. Naroeni, and S. Ouahrani-bettache, Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages, Infect Immun, vol.71, pp.1481-1490, 2003.

T. Starr, T. W. Ng, and T. D. Wehrly, Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment, Traffic, vol.9, pp.678-694, 2008.

D. Gonzalez, M. J. Grillo, D. Miguel, and M. J. , Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export, PLoS One, vol.3, p.2760, 2008.

J. De-bagüés, M. P. Terraza, A. Gross, and A. , Different responses of macrophages to smooth and rough Brucella spp.: relationship to virulence, Infect Immun, vol.72, pp.2429-2433, 2004.

M. E. Kovach, R. W. Phillips, and P. H. Elzer, pBBR1MCS: a broad-host-range cloning vector, Biotechniques, vol.16, pp.800-802, 1994.

K. L. Heckman and L. R. Pease, Gene splicing and mutagenesis by PCR-driven overlap extension, Nat Protoc, vol.2, pp.924-932, 2007.

D. B. Morton and P. H. Griffiths, Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment, Vet Rec, vol.116, pp.431-436, 1985.

A. Dahouk, S. Hofer, E. Tomaso, and H. , Intraspecies biodiversity of the genetically homologous species Brucella microti, Appl Environ Microbiol, vol.78, pp.1534-1543, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00676848

L. S. Dorobantu and M. R. Gray, Application of atomic force microscopy in bacterial research, Scanning, vol.32, pp.74-96, 2010.

D. Necas and P. Klapetek, Gwyddion: an open-source software for SPM data analysis, Central European Journal of Physics, vol.10, pp.181-188, 2012.

P. G. Cardoso, G. C. Macedo, and V. Azevedo, Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system, Microb Cell Fact, vol.5, p.13, 2006.

R. Conde-alvarez, V. Arce-gorvel, and M. Iriarte, The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition, PLoS Pathog, vol.8, p.1002675, 2012.

B. S. Henry, Dissociation in the Genus Brucella, J Infect Dis, vol.53, pp.374-402, 1933.

J. E. Ugalde, C. Czibener, and M. F. Feldman, Identification and characterization of the Brucella abortus phosphoglucomutase gene: role of lipopolysaccharide in virulence and intracellular multiplication, Infect Immun, vol.68, pp.5716-5723, 2000.

F. Godfroid, B. Taminiau, and I. Danese, Identification of the perosamine synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macrophages, Infect Immun, vol.66, pp.5485-5493, 1998.

L. B. Corbeil, K. Blau, and T. J. Inzana, Killing of Brucella abortus by bovine serum, Infect Immun, vol.56, pp.3251-3261, 1988.

C. M. Fernandez-prada, M. Nikolich, and R. Vemulapalli, Deletion of wboA enhances activation of the lectin pathway of complement in Brucella abortus and Brucella melitensis, Infect Immun, vol.69, pp.4407-4416, 2001.

J. E. Turse, J. Pei, and T. A. Ficht, Lipopolysaccharide-deficient Brucella variants arise spontaneously during infection, Front Microbiol, vol.2, p.54, 2011.

V. Vassen, C. Valotteau, and C. Feuillie, Localized incorporation of outer membrane components in the pathogen Brucella abortus, Embo J, vol.38, p.100323, 2019.

J. Pei and T. A. Ficht, Brucella abortus rough mutants are cytopathic for macrophages in culture, Infect Immun, vol.72, pp.440-450, 2004.

J. Pei, M. Kahl-mcdonagh, and T. A. Ficht, Brucella dissociation is essential for macrophage egress and bacterial dissemination, Front Cell Infect Microbiol, vol.4, p.23, 2014.

I. Moriyon, M. J. Grillo, and D. Monreal, Rough vaccines in animal brucellosis: structural and genetic basis and present status, Vet Res, vol.35, pp.1-38, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00902811