D. M. Phillips, The role of cell-to-cell transmission in HIV infection, AIDS, vol.8, pp.719-750, 1994.

D. S. Dimitrov, C. C. Broder, E. A. Berger, and R. Blumenthal, Calcium ions are required for cell fusion mediated by the CD4-human immunodeficiency virus type 1 envelope glycoprotein interaction, J Virol, vol.67, pp.1647-52, 1993.

J. M. Carr, H. Hocking, P. Li, and C. J. Burrell, Rapid and efficient cell-to-cell transmission of human immunodeficiency virus infection from monocyte-derived macrophages to peripheral blood lymphocytes, Virology, vol.265, pp.319-348, 1999.

P. Chen, W. Hübner, M. A. Spinelli, and B. K. Chen, Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses, J Virol, vol.81, pp.12582-95, 2007.

N. Martin and Q. Sattentau, Cell-to-cell HIV-1 spread and its implications for immune evasion, Curr Opin HIV AIDS, vol.4, pp.143-152, 2009.

L. M. Agosto, P. D. Uchil, and W. Mothes, HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy, Trends Microbiol, vol.23, pp.289-95, 2015.

M. Boullé, T. G. Müller, S. Dähling, Y. Ganga, L. Jackson et al., HIV cell-to-cell spread results in earlier onset of viral gene expression by multiple infections per cell, PLoS Pathog, vol.12, p.1005964, 2016.

D. Portillo, A. Tripodi, J. Najfeld, V. Wodarz, D. Levy et al., Multiploid inheritance of HIV-1 during cell-to-cell infection, J Virol, vol.85, pp.7169-76, 2011.

R. A. Russell, N. Martin, I. Mitar, E. Jones, and Q. J. Sattentau, Multiple proviral integration events after virological synapse-mediated HIV-1 spread, Virology, vol.443, pp.143-152, 2013.

P. Zhong, L. M. Agosto, J. B. Munro, and W. Mothes, Cell-to-cell transmission of viruses, Curr Opin Virol, vol.3, pp.44-50, 2013.

M. Sourisseau, N. Sol-foulon, F. Porrot, F. Blanchet, and O. Schwartz, Inefficient human immunodeficiency virus replication in mobile lymphocytes, J Virol, vol.81, pp.1000-1012, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00292736

T. T. Murooka, M. Deruaz, F. Marangoni, V. D. Vrbanac, E. Seung et al., HIV-infected T cells are migratory vehicles for viral dissemination, Nature, vol.490, pp.283-290, 2012.

B. Sallé, P. Brochard, O. Bourry, A. Mannioui, T. Andrieu et al., Infection of macaques after vaginal exposure to cell-associated simian immunodeficiency virus, J Infect Dis, vol.202, pp.337-381, 2010.

D. Kolodkin-gal, S. L. Hulot, B. Korioth-schmitz, R. B. Gombos, Y. Zheng et al., Efficiency of cell-free and cell-associated virus in mucosal transmission of human immunodeficiency virus type 1 and simian immunodeficiency virus, J Virol, vol.87, pp.13589-97, 2013.

A. Sigal, J. T. Kim, A. B. Balazs, E. Dekel, A. Mayo et al., Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, vol.477, pp.95-103, 2011.

M. Permanyer, E. Ballana, A. Ruiz, R. Badia, E. Riveira-munoz et al., Antiretroviral agents effectively block HIV replication after cell-to-cell transfer, J Virol, vol.86, pp.8773-80, 2012.

M. Buszczak, M. Inaba, and Y. M. Yamashita, Signaling by cellular protru sions: keeping the conversation private, Trends Cell Biol, vol.26, pp.526-560, 2016.

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. Gerdes, Nanotubular highways for intercellular organelle transport, vol.303, pp.1007-1017, 2004.

N. M. Sherer, M. J. Lehmann, L. F. Jimenez-soto, C. Horensavitz, M. Pypaert et al., Retroviruses can establish filopodial bridges for efficient cell-tocell transmission, Nat Cell Biol, vol.9, p.310, 2007.

H. R. Chinnery, E. Pearlman, and P. G. Mcmenamin, Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea, J Immunol, vol.180, pp.5779-83, 2008.

E. Lou, S. Fujisawa, A. Morozov, A. Barlas, Y. Romin et al., Tunne ling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma, PLoS One, vol.7, p.33093, 2012.

Y. Seyed-razavi, M. J. Hickey, L. Kuffová, P. G. Mcmenamin, and H. R. Chinnery, Membrane nanotubes in myeloid cells in the adult mouse cornea represent a novel mode of immune cell interaction, Immunol Cell Biol, vol.91, pp.89-95, 2013.

K. Gousset and C. Zurzolo, Tunnelling nanotubes: a highway for prion spreading?, Prion, vol.3, pp.94-102, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00406148

Y. Wang, J. Cui, X. Sun, and Y. Zhang, Tunneling-nanotube development in astrocytes depends on p53 activation, Cell Death Differ, vol.18, pp.732-774, 2011.

E. A. Eugenin, P. J. Gaskill, and J. W. Berman, Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking, Cell Immunol, vol.254, pp.142-150, 2009.

K. Hase, S. Kimura, H. Takatsu, M. Ohmae, S. Kawano et al., M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex, Nat Cell Biol, vol.11, pp.1427-1459, 2009.

B. Onfelt, S. Nedvetzki, K. Yanagi, and D. M. Davis, Cutting edge: membrane nanotubes connect immune cells, J Immunol, vol.173, pp.1511-1514, 2004.

B. Onfelt, S. Nedvetzki, R. Benninger, M. A. Purbhoo, S. Sowinski et al., Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria, J Immunol, vol.177, pp.8476-83, 2006.

S. C. Watkins and R. D. Salter, Functional connectivity between immune cells mediated by tunneling nanotubules, Immunity, vol.23, pp.309-327, 2005.

S. Sowinski, C. Jolly, O. Berninghausen, M. A. Purbhoo, A. Chauveau et al., Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nat Cell Biol, vol.10, pp.211-220, 2008.

S. Kimura, K. Hase, and H. Ohno, The molecular basis of induction and formation of tunneling nanotubes, Cell Tissue Res, vol.352, pp.67-76, 2013.

L. Marzo, K. Gousset, and C. Zurzolo, Multifaceted roles of tunneling nanotubes in intercellular communication, Front Physiol, vol.3, p.72, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00716379

I. F. Smith, J. Shuai, and I. Parker, Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes, Biophys J, vol.100, pp.37-46, 2011.

I. Kadiu and H. E. Gendelman, Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and Golgi network, J Proteome Res, vol.10, pp.3225-3263, 2011.

I. Kadiu and H. E. Gendelman, Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection, J Neuroimmune Pharmacol, vol.6, pp.658-75, 2011.

W. Xu, P. A. Santini, J. S. Sullivan, B. He, M. Shan et al., HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits, Nat Immunol, vol.10, pp.1008-1025, 2009.

M. Hashimoto, F. Bhuyan, M. Hiyoshi, O. Noyori, H. Nasser et al., Potential role of the formation of tunneling nanotubes in HIV-1 spread in macrophages, J Immunol, vol.196, pp.1832-1873, 2016.

P. K. Mattila and P. Lappalainen, Filopodia: molecular architecture and cellular functions, Nat Rev Mol Cell Biol, vol.9, pp.446-54, 2008.

D. S. Nikolic, M. Lehmann, R. Felts, E. Garcia, F. P. Blanchet et al., HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation, Blood, vol.118, pp.4841-52, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02352348

A. Aggarwal, T. L. Iemma, I. Shih, T. P. Newsome, S. Mcallery et al., Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells, PLoS Pathog, vol.8, p.1002762, 2012.

T. Igakura, J. C. Stinchcombe, P. Goon, G. P. Taylor, J. N. Weber et al., Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton, Science, vol.299, pp.1713-1719, 2003.

, Frontiers in Immunology | www.frontiersin.org February, vol.9, p.260, 2018.

S. Agüera-gonzalez, J. Bouchet, and A. Alcover, Immunological synapse. eLS, 2015.

J. B. Huppa and M. M. Davis, T-cell-antigen recognition and the immunological synapse, Nat Rev Immunol, vol.3, pp.973-83, 2003.

P. U. Cameron, P. S. Freudenthal, J. M. Barker, S. Gezelter, K. Inaba et al., Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells, Science, vol.257, pp.383-390, 1992.

P. Gupta, R. Balachandran, M. Ho, A. Enrico, and C. Rinaldo, Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody, J Virol, vol.63, pp.2361-2366, 1989.

H. Sato, J. Orenstein, D. Dimitrov, and M. Martin, Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles, Virology, vol.186, pp.712-736, 1992.

C. Jolly and Q. J. Sattentau, Retroviral spread by induction of virological synapses, Traffic, vol.5, pp.643-50, 2004.

C. Jolly, K. Kashefi, M. Hollinshead, and Q. J. Sattentau, HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse, J Exp Med, vol.199, pp.283-93, 2004.

G. Vasiliver-shamis, M. L. Dustin, and C. E. Hioe, HIV-1 virological synapse is not simply a copycat of the immunological synapse, Viruses, vol.2, pp.1239-60, 2010.

R. A. Alvarez, M. I. Barría, and B. K. Chen, Unique features of HIV-1 spread through T cell virological synapses, PLoS Pathog, vol.10, p.1004513, 2014.

C. Jolly, I. Mitar, and Q. J. Sattentau, Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1, J Virol, vol.81, pp.5547-60, 2007.

C. Jolly, I. Mitar, and Q. J. Sattentau, Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells, J Virol, vol.81, pp.13916-13937, 2007.

S. Starling and C. Jolly, LFA-1 engagement triggers T cell polarization at the HIV-1 virological synapse, J Virol, vol.90, pp.9841-54, 2016.

G. Vasiliver-shamis, M. W. Cho, C. E. Hioe, and M. L. Dustin, Human immunodeficiency virus type 1 envelope gp120-induced partial T-cell receptor signaling creates an F-actin-depleted zone in the virological synapse, J Virol, vol.83, pp.11341-55, 2009.

I. Puigdomènech, M. Massanella, N. Izquierdo-useros, R. Ruiz-hernandez, M. Curriu et al., HIV transfer between CD4 T cells does not require LFA-1 binding to ICAM-1 and is governed by the interaction of HIV envelope glycoprotein with CD4, Retrovirology, vol.5, p.32, 2008.

J. Blanco, B. Bosch, M. T. Fernández-figueras, J. Barretina, B. Clotet et al., High level of coreceptor-independent HIV transfer induced by contacts between primary CD4 T cells, J Biol Chem, vol.279, pp.51305-51319, 2004.

B. M. Dale, G. P. Mcnerney, D. L. Thompson, W. Hubner, K. De-los-reyes et al., Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion, Cell Host Microbe, vol.10, pp.551-62, 2011.

R. L. Felts, K. Narayan, J. D. Estes, D. Shi, C. M. Trubey et al., 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells, Proc Natl Acad Sci U S A, vol.107, pp.13336-13377, 2010.

W. Hübner, G. P. Mcnerney, P. Chen, B. M. Dale, R. E. Gordon et al., Quantitative 3D video microscopy of HIV transfer across T cell virological synapses, Science, vol.323, pp.1743-1750, 2009.

N. Martin, S. Welsch, C. Jolly, J. Briggs, D. Vaux et al., Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition, J Virol, vol.84, pp.3516-3543, 2010.

D. Rudnicka, J. Feldmann, F. Porrot, S. Wietgrefe, S. Guadagnini et al., Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses, J Virol, vol.83, pp.6234-6280, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00458065

C. Jolly and Q. J. Sattentau, Regulated secretion from CD4+ T cells, Trends Immunol, vol.28, pp.474-81, 2007.

C. Jolly, S. Welsch, S. Michor, and Q. J. Sattentau, The regulated secretory pathway in CD4(+) T cells contributes to human immunodeficiency virus type-1

, cell-to-cell spread at the virological synapse, PLoS Pathog, vol.7, 2011.

N. Sol-foulon, M. Sourisseau, F. Porrot, M. Thoulouze, C. Trouillet et al., ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation, EMBO J, vol.26, pp.516-542, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00292789

K. Miyauchi, Y. Kim, O. Latinovic, V. Morozov, and G. B. Melikyan, HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes, Cell, vol.137, pp.433-477, 2009.

E. Ruggiero, R. Bona, C. Muratori, and M. Federico, Virological consequences of early events following cell-cell contact between human immunodeficiency virus type 1-infected and uninfected CD4+ cells, J Virol, vol.82, pp.7773-89, 2008.

R. D. Sloan, B. D. Kuhl, T. Mesplède, J. Münch, D. A. Donahue et al., Productive entry of HIV-1 during cell-to-cell transmission via dynamin-dependent endocytosis, J Virol, vol.87, pp.8110-8133, 2013.

B. Bosch, B. Grigorov, J. Senserrich, B. Clotet, J. Darlix et al., A clathrin-dynamin-dependent endocytic pathway for the uptake of HIV-1 by direct T cell-T cell transmission, Antiviral Res, vol.80, pp.185-93, 2008.

I. Puigdomènech, M. Massanella, C. Cabrera, B. Clotet, and J. Blanco, On the steps of cell-to-cell HIV transmission between CD4 T cells, Retrovirology, vol.6, p.89, 2009.

T. Do, G. Murphy, L. A. Earl, D. Prete, G. Q. Grandinetti et al., Three-dimensional imaging of HIV-1 virological synapses reveals membrane architectures involved in virus transmission, J Virol, vol.88, pp.10327-10366, 2014.

N. L. Galloway, G. Doitsh, K. M. Monroe, Z. Yang, I. Muñoz-arias et al., Cell-to-cell transmission of HIV-1 is required to trigger pyroptotic death of lymphoid tissue-derived CD4 T cells, Cell Rep, vol.12, pp.1555-63, 2015.

M. Denizot, M. Varbanov, L. Espert, V. Robert-hebmann, S. Sagnier et al., HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells, Autophagy, vol.4, pp.998-1008, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00346445

J. Blanco, J. Barretina, K. F. Ferri, E. Jacotot, A. Gutiérrez et al., Cell-surface-expressed HIV-1 envelope induces the death of CD4 T cells during GP41-mediated hemifusion-like events, Virology, vol.305, pp.318-347, 2003.

G. Pantaleo, J. F. Demarest, M. Vaccarezza, C. Graziosi, G. P. Bansal et al., Effect of anti-V3 antibodies on cell-free and cell-to-cell human immunodeficiency virus transmission, Eur J Immunol, vol.25, pp.226-257, 1995.

I. A. Abela, L. Berlinger, M. Schanz, L. Reynell, H. F. Günthard et al., Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies, PLoS Pathog, vol.8, p.1002634, 2012.

M. Malbec, M. Sourisseau, F. Guivel-benhassine, F. Porrot, F. Blanchet et al., HIV-1 Nef promotes the localization of Gag to the cell membrane and facilitates viral cell-to-cell transfer, Retrovirology, vol.10, p.80, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00850114

M. Massanella, I. Puigdomènech, C. Cabrera, M. T. Fernandez-figueras, A. Aucher et al., Antigp41 antibodies fail to block early events of virological synapses but inhibit HIV spread between T cells, AIDS, vol.23, pp.183-191, 2009.

L. M. Agosto, P. Zhong, J. Munro, and W. Mothes, Highly active antiretroviral therapies are effective against HIV-1 cell-to-cell transmission, PLoS Pathog, vol.10, p.1003982, 2014.

B. K. Titanji, M. Aasa-chapman, D. Pillay, and C. Jolly, Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells, Retrovirology, vol.10, p.161, 2013.

L. Burleigh, P. Lozach, C. Schiffer, I. Staropoli, V. Pezo et al., Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells, J Virol, vol.80, pp.2949-57, 2006.

C. Duncan, J. P. Williams, T. Schiffner, K. Gärtner, C. Ochsenbauer et al., High-multiplicity HIV-1 infection and neutralizing antibody evasion mediated by the macrophage-T cell virological synapse, J Virol, vol.88, pp.2025-2059, 2014.

K. Gousset, S. D. Ablan, L. V. Coren, A. Ono, F. Soheilian et al., Real-time visualization of HIV-1 GAG trafficking in infected Frontiers in Immunology | www, vol.9, p.260, 2018.

, PLoS Pathog, vol.4, p.1000015, 2008.

J. Arrighi, M. Pion, E. Garcia, J. Escola, Y. Van-kooyk et al., DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells, J Exp Med, vol.200, pp.1279-88, 2004.

T. B. Geijtenbeek, D. S. Kwon, R. Torensma, S. J. Van-vliet, G. C. Van-duijnhoven et al., DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells, Cell, vol.100, pp.80694-80701, 2000.

M. T. Rodriguez-plata, I. Puigdomènech, N. Izquierdo-useros, M. C. Puertas, J. Carrillo et al., The infectious synapse formed between mature dendritic cells and CD4(+) T cells is independent of the presence of the HIV-1 envelope glycoprotein, Retrovirology, vol.10, p.42, 2013.

C. Dong, A. M. Janas, J. Wang, W. J. Olson, and L. Wu, Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis-and trans-infection, J Virol, vol.81, pp.11352-62, 2007.

E. Garcia, M. Pion, A. Pelchen-matthews, L. Collinson, J. Arrighi et al., HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse, Traffic, vol.6, pp.488-501, 2005.

N. Izquierdo-useros, M. Lorizate, F. Contreras, M. T. Rodriguez-plata, B. Glass et al., Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1, PLoS Biol, vol.10, p.1001315, 2012.

N. Izquierdo-useros, M. Lorizate, M. C. Puertas, M. T. Rodriguez-plata, N. Zangger et al., Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides, PLoS Biol, vol.10, p.1001448, 2012.

X. Sewald, M. S. Ladinsky, P. D. Uchil, J. Beloor, R. Pi et al., Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection, Science, vol.350, pp.563-570, 2015.

H. Dutartre, M. Clavière, C. Journo, and R. Mahieux, Cell-free versus cell-to-cell infection by human immunodeficiency virus type 1 and human T-lymphotropic virus type 1: exploring the link among viral source, viral trafficking, and viral replication, J Virol, vol.90, pp.7607-7624, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01909002

D. Mcdonald, Dendritic cells and HIV-1 trans-infection, Viruses, vol.2, pp.1704-1721, 2010.

V. Piguet and R. M. Steinman, The interaction of HIV with dendritic cells: outcomes and pathways, Trends Immunol, vol.28, pp.503-513, 2007.

M. Pope, M. G. Betjes, N. Romani, H. Hirmand, P. U. Cameron et al., Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1, Cell, vol.78, issue.94, pp.90418-90427, 1994.

H. Akiyama, N. Ramirez, M. V. Gudheti, and S. Gummuluru, CD169-mediated trafficking of HIV to plasma membrane invaginations in dendritic cells attenuates efficacy of anti-gp120 broadly neutralizing antibodies, PLoS Pathog, vol.11, p.1004751, 2015.

D. Mcdonald, L. Wu, S. M. Bohks, V. N. Kewalramani, D. Unutmaz et al., Recruitment of HIV and its receptors to dendritic cell-T cell junctions, Science, vol.300, pp.1295-1302, 2003.

M. Sagar, H. Akiyama, B. Etemad, N. Ramirez, I. Freitas et al., Transmembrane domain membrane proximal external region but not surface unit-directed broadly neutralizing HIV-1 antibodies can restrict dendritic cell-mediated HIV-1 trans-infection, J Infect Dis, vol.205, pp.1248-57, 2012.

M. M. Ménager and D. R. Littman, Actin dynamics regulates dendritic cellmediated transfer of HIV-1 to T cells, Cell, vol.164, pp.695-709, 2016.

L. De-witte, A. Nabatov, M. Pion, D. Fluitsma, M. De-jong et al., Langerin is a natural barrier to HIV-1 transmission by Langerhans cells, Nat Med, vol.13, pp.367-71, 2007.

L. Ballweber, B. Robinson, A. Kreger, M. Fialkow, G. Lentz et al., Vaginal Langerhans cells nonproductively transporting HIV-1 mediate infection of T cells, J Virol, vol.85, pp.13443-13450, 2011.

J. E. Hammonds, N. Beeman, L. Ding, S. Takushi, A. C. Francis et al., Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1, PLoS Pathog, vol.13, p.1006181, 2017.

C. T. Costiniuk and M. Jenabian, Cell-to-cell transfer of HIV infection: implications for HIV viral persistence, J Gen Virol, vol.95, pp.2346-55, 2014.

J. L. Dargent, L. Lespagnard, A. Kornreich, P. Hermans, N. Clumeck et al., HIV-associated multinucleated giant cells in lymphoid tissue of the Waldeyer's ring: a detailed study, Mod Pathol, vol.13, pp.1293-1302, 2000.

T. Fischer-smith, C. Bell, S. Croul, M. Lewis, and J. Rappaport, Monocyte/ macrophage trafficking in acquired immunodeficiency syndrome ence phalitis: lessons from human and nonhuman primate studies, J Neurovirol, vol.14, pp.318-344, 2008.

C. Geny, R. Gherardi, P. Boudes, F. Lionnet, P. Cesaro et al., Multifocal multinucleated giant cell myelitis in an AIDS patient, Neuropathol Appl Neurobiol, vol.17, pp.157-62, 1991.

M. Lewin-smith, S. M. Wahl, and J. M. Orenstein, Human immunodeficiency virusrich multinucleated giant cells in the colon: a case report with transmission electron microscopy, immunohistochemistry, and in situ hybridization, Mod Pathol, vol.12, pp.75-81, 1999.

J. M. Orenstein, The macrophage in HIV infection, Immunobiology, vol.204, pp.598-602, 2001.

B. Vicandi, J. A. Jiménez-heffernan, P. López-ferrer, M. Patrón, C. Gamallo et al., HIV-1 (p24)-positive multinucleated giant cells in HIVassociated lymphoepithelial lesion of the parotid gland. A report of two cases, Acta Cytol, vol.43, pp.247-51, 1999.

C. A. Carter and L. S. Ehrlich, Cell biology of HIV-1 infection of macro phages, Annu Rev Microbiol, vol.62, pp.425-468, 2008.

M. Deneka, A. Pelchen-matthews, R. Byland, E. Ruiz-mateos, and M. Marsh, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53, macrophages, vol.177, pp.329-370, 2007.

P. Mlcochova, A. Pelchen-matthews, and M. Marsh, Organization and regulation of intracellular plasma membrane-connected HIV-1 assembly compartments in macrophages, BMC Biol, vol.11, p.89, 2013.

D. O. Nkwe, A. Pelchen-matthews, J. J. Burden, L. M. Collinson, and M. Marsh, The intracellular plasma membrane-connected compartment in the assembly of HIV-1 in human macrophages, BMC Biol, vol.14, p.50, 2016.

M. Jouve, N. Sol-foulon, S. Watson, O. Schwartz, and P. Benaroch, HIV-1 buds and accumulates in "nonacidic" endosomes of macrophages, Cell Host Microbe, vol.2, pp.85-95, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00293133

A. Ono and E. O. Freed, Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma membrane and the multivesicular body, J Virol, vol.78, pp.1552-63, 2004.

J. M. Orenstein, M. S. Meltzer, T. Phipps, and H. E. Gendelman, Cytoplasmic assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes: an ultrastructural study, J Virol, vol.62, pp.2578-86, 1988.

A. Pelchen-matthews, B. Kramer, and M. Marsh, Infectious HIV-1 assembles in late endosomes in primary macrophages, J Cell Biol, vol.162, pp.443-55, 2003.

A. E. Bennett, K. Narayan, D. Shi, L. M. Hartnell, K. Gousset et al., Ion-abrasion scanning electron microscopy reveals surface-connected tubular conduits in HIV-infected macrophages, PLoS Pathog, vol.5, p.1000591, 2009.

S. Welsch, O. T. Keppler, A. Habermann, I. Allespach, J. Krijnse-locker et al., HIV-1 buds predominantly at the plasma membrane of primary human macrophages, PLoS Pathog, vol.3, 2007.

F. Groot, S. Welsch, and Q. J. Sattentau, Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses, Blood, vol.111, pp.4660-4663, 2008.

K. Waki and E. O. Freed, Macrophages and cell-cell spread of HIV-1, Viruses, vol.2, pp.1603-1623, 2010.

A. E. Baxter, R. A. Russell, C. Duncan, M. D. Moore, C. B. Willberg et al., Macrophage infection via selective capture of HIV-1-infected CD4+ T cells, Cell Host Microbe, vol.16, pp.711-732, 2014.

N. Calantone, F. Wu, Z. Klase, C. Deleage, M. Perkins et al., Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells, Immunity, vol.41, pp.493-502, 2014.

S. R. Dinapoli, A. M. Ortiz, F. Wu, K. Matsuda, H. L. Twigg et al., Tissue-resident macrophages can contain replication-competent virus in antiretroviral-naive, SIV-infected Asian macaques, JCI Insight, vol.2, p.91214, 2017.

M. Overholtzer, A. A. Mailleux, G. Mouneimne, G. Normand, S. J. Schnitt et al., A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion, Cell, vol.131, pp.966-79, 2007.

M. Overholtzer and J. S. Brugge, The cell biology of cell-in-cell structures, Nat Rev Mol Cell Biol, vol.9, pp.796-809, 2008.

C. Ni, L. Huang, Y. Chen, M. He, Y. Hu et al., Implication of cell-in-cell structures in the transmission of HIV to epithelial cells, Cell Res, vol.25, pp.1265-1273, 2015.

J. E. Hildreth and R. J. Orentas, Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation, Science, vol.244, pp.1075-1083, 1989.

J. D. Lifson, M. B. Feinberg, G. R. Reyes, L. Rabin, B. Banapour et al., Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein, Nature, vol.323, pp.725-733, 1986.

D. Schols, R. Pauwels, M. Baba, J. Desmyter, D. Clercq et al., Syncytium formation and destruction of bystander CD4+ cells cocultured with T cells persistently infected with human immunodeficiency virus as demonstrated by flow cytometry, J Gen Virol, pp.2397-408, 1989.

J. Sodroski, W. C. Goh, C. Rosen, K. Campbell, and W. A. Haseltine, Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity, Nature, vol.322, pp.470-474, 1986.

A. Sylwester, D. Wessels, S. A. Anderson, R. Q. Warren, D. C. Shutt et al., HIV-induced syncytia of a T cell line form single giant pseudopods and are motile, J Cell Sci, pp.941-53, 1993.

A. Sylwester, S. Murphy, D. Shutt, and D. R. Soll, HIV-induced T cell syncytia are self-perpetuating and the primary cause of T cell death in culture, J Immunol, vol.158, pp.3996-4007, 1997.

D. R. Soll and R. C. Kennedy, The role of T cell motility and cytoskeletal reorganization in HIV-induced syncytium formation, AIDS Res Hum Retroviruses, vol.10, pp.325-332, 1994.

T. Roumier, M. Castedo, J. Perfettini, K. Andreau, D. Métivier et al., Mitochondrion-dependent caspase activation by the HIV-1 envelope, Biochem Pharmacol, vol.66, pp.1321-1330, 2003.

K. F. Ferri, E. Jacotot, J. Blanco, J. A. Esté, N. Zamzami et al., Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases, J Exp Med, vol.192, pp.1081-92, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00315086

B. Ahr, V. Robert-hebmann, C. Devaux, and M. Biard-piechaczyk, Apoptosis of uninfected cells induced by HIV envelope glycoproteins, Retrovirology, vol.1, p.12, 2004.

R. Nardacci, J. Perfettini, L. Grieco, D. Thieffry, G. Kroemer et al., Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: an overview, Cell Death Dis, vol.6, p.1846, 2015.

J. P. Moore and D. D. Ho, HIV-1 neutralization: the consequences of viral adaptation to growth on transformed T cells, AIDS, issue.9, pp.117-153, 1995.

H. Schuitemaker, N. A. Kootstra, M. Groenink, R. E. De-goede, F. Miedema et al., Differential tropism of clinical HIV-1 isolates for primary monocytes and promonocytic cell lines, AIDS Res Hum Retroviruses, vol.8, pp.1679-82, 1992.

E. A. Berger, R. W. Doms, E. Fenyo, B. Korber, D. R. Littman et al., In vivo cytolysis and fusion of human immunodeficiency virus type 1-infected lymphocytes in lymphoid tissue, Orenstein JM, vol.391, pp.338-380, 1998.

M. Symeonides, T. Murooka, L. Bellfy, N. Roy, T. Mempel et al., HIV-1-induced small t cell syncytia can transfer virus particles to target cells through transient contacts, Viruses, vol.7, pp.6590-603, 2015.

M. Gordón-alonso, M. Yañez-mó, O. Barreiro, S. Alvarez, M. A. Muñoz-fernández et al., Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion, J Immunol, vol.177, pp.5129-5166, 2006.

N. H. Roy, M. Lambelé, J. Chan, M. Symeonides, and M. Thali, Ezrin is a component of the HIV-1 virological presynapse and contributes to the inhibition of cellcell fusion, J Virol, vol.88, pp.7645-58, 2014.

J. Weng, D. N. Krementsov, S. Khurana, N. H. Roy, and M. Thali, Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells, J Virol, vol.83, pp.7467-74, 2009.

T. Yoshida, Y. Kawano, K. Sato, Y. Ando, J. Aoki et al., A CD63 mutant inhibits T-cell tropic human immunodeficiency virus type 1 entry by disrupting CXCR4 trafficking to the plasma membrane, Traffic, vol.9, pp.540-58, 2008.

T. Yoshida, H. Ebina, and Y. Koyanagi, N-linked glycan-dependent interaction of CD63 with CXCR4 at the Golgi apparatus induces downregulation of CXCR4, Microbiol Immunol, vol.53, pp.629-664, 2009.

S. S. Frankel, B. M. Wenig, A. P. Burke, P. Mannan, L. D. Thompson et al., Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid, Science, vol.272, pp.115-122, 1996.

A. Granelli-piperno, M. Pope, K. Inaba, and R. M. Steinman, Coexpression of NF-kappa B/Rel and Sp1 transcription factors in human immunodeficiency virus 1-induced, dendritic cell-T-cell syncytia, Proc Natl Acad Sci U S A, vol.92, pp.10944-10952, 1995.

S. Koenig, H. E. Gendelman, J. M. Orenstein, M. C. Dal-canto, G. H. Pezeshkpour et al., Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy, Science, vol.233, pp.1089-93, 1986.

J. M. Orenstein and S. M. Wahl, The macrophage origin of the HIV-expressing multinucleated giant cells in hyperplastic tonsils and adenoids, Ultrastruct Pathol, vol.23, pp.79-91, 1999.

I. Teo, C. Veryard, H. Barnes, S. F. An, M. Jones et al., Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS, J Virol, vol.71, pp.2928-2961, 1997.

J. M. Ward, T. J. O'leary, G. B. Baskin, R. Benveniste, C. A. Harris et al., Immunohistochemical localization of human and simian immunodefici ency viral antigens in fixed tissue sections, Am J Pathol, vol.127, pp.199-205, 1987.

C. Vérollet, Y. M. Zhang, L. Cabec, V. Mazzolini, J. Charrière et al., HIV-1 Nef triggers macrophage fusion in a p61Hck-and protease-dependent manner, J Immunol, vol.184, pp.7030-7039, 2010.

L. Bracq, M. Xie, M. Lambelé, L. Vu, J. Matz et al., T cellmacrophage fusion triggers multinucleated giant cell formation for HIV-1 spreading, J Virol, vol.91, pp.1237-1217, 2017.

C. Harbison, K. Zhuang, A. Gettie, J. Blanchard, H. Knight et al., Giant cell encephalitis and microglial infection with mucosally transmitted simian-human immunodeficiency virus SHIVSF162P3N in rhesus macaques, J Neurovirol, vol.20, pp.62-72, 2014.