D. Baud, D. J. Gubler, B. Schaub, M. C. Lanteri, and D. Musso, Lancet, vol.390, pp.2099-109, 2017.

L. R. Petersen, D. J. Jamieson, A. M. Powers, and M. A. Honein, N. Engl. J. Med, vol.374, pp.1552-1563, 2016.

, European Centre for Disease Prevention and Control, Zika Virus disease

A. Hajra, D. Bandyopadhyay, L. R. Bhadra, S. Ball, and S. K. Hajra, Am. J. Reprod. Immunol, vol.77, p.12607, 1980.

C. A. Fontes, A. A. Santos, and E. Marchiori, Neuroradiology, vol.58, pp.837-838, 2016.

, European Medicines Agency

Y. S. Tian, Y. Zhou, T. Takagi, M. Kameoka, and N. Kawashita, Chem. Pharm. Bull, vol.66, pp.191-206, 2018.

V. Boldescu, M. A. Behnam, N. Vasilakis, and C. D. Klein, Nat. Rev. Drug Discovery, vol.16, pp.565-586, 2017.

L. Botta, M. Rivara, V. Zuliani, and M. Radi, Front. Biosci, vol.23, pp.997-1019, 2018.

M. A. Behnam, C. Nitsche, V. Boldescu, and C. D. Klein, J. Med. Chem, vol.59, pp.5622-5649, 2016.

M. Xu, E. M. Lee, Z. Wen, Y. Cheng, W. K. Huang et al., Nat. Med, vol.22, pp.1101-1107, 2016.

H. Lee, J. Ren, S. Nocadello, A. J. Rice, I. Ojeda et al., Antiviral Res, vol.139, pp.49-58, 2017.

E. D. Micewicz, R. Khachatoorian, S. W. French, and P. Ruchala, Bioorg. Med. Chem. Lett, vol.28, pp.452-458, 2018.

S. J. Kaptein, P. Vincetti, E. Crespan, J. I. Rivera, G. Costantino et al., ChemMedChem, vol.13, pp.1371-1376, 2018.

P. Vincetti, S. J. Kaptein, G. Costantino, J. Neyts, and M. Radi, ACS Med. Chem. Lett, vol.10, pp.558-563, 2019.

H. Wu, S. Bock, M. Snitko, T. Berger, T. Weidner et al., Antimicrob. Agents Chemother, vol.59, pp.1100-1109, 2015.

C. M. Byrd, D. W. Grosenbach, A. Berhanu, D. Dai, K. F. Jones et al., Antimicrob. Agents Chemother, vol.57, pp.1902-1912, 2013.

S. P. Lim, L. S. Sonntag, C. Noble, S. H. Nilar, R. H. Ng et al., J. Biol. Chem, vol.286, pp.6233-6240, 2011.

J. Hernandez, L. Hoffer, B. Coutard, G. Querat, P. Roche et al., Eur. J. Med. Chem, vol.161, pp.323-333, 2019.

P. Vincetti, F. Caporuscio, S. Kaptein, A. Gioiello, V. Mancino et al., J. Med. Chem, vol.58, pp.4964-4975, 2015.

B. Zhao, G. Yi, F. Du, Y. C. Chuang, R. C. Vaughan et al., Nat. Commun, vol.8, p.14762, 2017.

Z. Zhang, Y. Li, Y. R. Loh, W. W. Phoo, A. W. Hung et al., Science, vol.354, pp.1597-1600, 2016.

B. Coutard, K. Barral, J. Lichière, B. Selisko, B. Martin et al., J. Virol, vol.91, pp.2202-02216, 2017.

F. Benmansour, I. Trist, B. Coutard, E. Decroly, G. Querat et al., Eur. J. Med. Chem, vol.125, pp.865-880, 2017.

H. Dong, D. C. Chang, X. Xie, Y. X. Toh, K. Y. Chung et al., Virology, vol.405, pp.568-578, 2010.

E. Decroly and B. Canard, Curr. Opin. Virol, vol.24, pp.87-96, 2017.

R. Züst, H. Dong, X. F. Li, D. C. Chang, B. Zhang et al., PLoS Pathog, issue.9, 2013.

, The homology model was then compared to the 3D structure of ZIKV NS5MTase once it was released, showing full similarity, When the work was carried out, the 3D structure of ZIKV NS5-MTase was not elucidated yet. Thus, a homology model based on the DENV NS5 MTase was built

A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello et al., Nucleic Acids Res, vol.46, pp.296-303, 2018.

D. Varshney, A. P. Petit, J. A. Bueren-calabuig, C. Jansen, D. A. Fletcher et al., Nucleic Acids Res, vol.44, pp.10423-10436, 2016.

, Compound 15 did not show any effect on DENV MTase and poorly inhibited the ZIKV MTase (25 % of inhibition). For this reason, the IC 50 of 15 against ZIKV MTase was not determined, 2019.