, Health Organization, 2017.

S. C. Weaver and W. K. Reisen, Present and future arboviral threats, Antiviral Res, vol.85, pp.328-345, 2010.

F. Amraoui, G. Krida, A. Bouattour, A. Rhim, J. Daaboub et al., Culex pipiens, an experimental efficient vector of West Nile and Rift Valley fever viruses in the Maghreb region, PloS One, vol.7, p.36757, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00703443

A. D. Barrett and W. Nile, Europe: an increasing public health problem, J Travel Med, vol.25, p.96, 2018.

T. Abdelhaq and A. , West Nile fever in horses in Morocco, Bull Off Int Epizoot, vol.108, pp.867-869, 1996.

M. El-harrack, L. Guenno, B. Gounon, and P. , Virologie, vol.1, pp.248-257, 1997.

I. Schuffenecker, C. N. Peyrefitte, E. Harrak, M. Murri, S. Leblond et al., Emerg Infect Dis, vol.11, 2003.

H. El-rhaffouli, E. Harrak, M. Lotfi, C. , E. Boukhrissi et al., Serologic evidence of West Nile virus infection among humans, Emerg Infect Dis, vol.18, 2012.

F. Amraoui, M. Tijane, M. Sarih, and F. , Molecular evidence of Culex pipiens form molestus and hybrids pipiens/molestus in Morocco, Parasit Vectors, vol.5, p.83, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00722006

A. Spielman, Population structure in the Culex pipiens complex of mosquitos, Bull World Health Organ, vol.37, p.271, 1967.

N. Kassim, C. E. Webb, and R. Rc, Culex molestus Forskal (Diptera: Culicidae) in Australia: colonisation, stenogamy, autogeny, oviposition and larval development, Aust J Entomol, vol.51, pp.67-77, 2012.

N. Pasteur, J. A. Rioux, E. Guilvard, P. , and J. , A new report of naturally anautogenous and stenogamic populations of Culex pipiens pipiens L. in the south of France (author's transl), Ann Parasitol Hum Comp, vol.52, pp.205-210, 1977.

S. Urbanelli, L. Bullini, and F. Villani, Electrophoretic studies on Culex quinquefasciatus Say from Africa: genetic variability and divergence from Culex pipiens L.(Diptera: Culicidae), vol.75, pp.291-304, 1985.

T. Ishii, On the Culex pipiens group in Japan Part III. A historical review of its research 4. Review of the adult character (3), J Sci Univ Tokushima, vol.13, pp.29-62, 1980.

A. Farajollahi, D. M. Fonseca, L. D. Kramer, and A. M. Kilpatrick, Bird biting" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology, Infect Genet Evol, vol.11, pp.1577-1585, 2011.

C. Faraj, E. Adlaoui, M. Elkohli, T. Herrak, B. Ameur et al., Review of Temephos Discriminating Concentration for Monitoring the Susceptibility of Anopheles labranchiae (Falleroni, 1926), Malaria Vector in Morocco, Malar Res Treat, p.12, 2010.

É. Haubruge and M. Amichot, Les mécanismes responsables de la résistance aux insecticides chez les insectes et les acariens, BASE, 1998.

J. Hemingway, N. J. Hawkes, L. Mccarroll, and H. Ranson, The molecular basis of insecticide resistance in mosquitoes, Insect Biochem Mol Biol, vol.34, pp.653-665, 2004.

P. Labbé, H. Alout, L. Djogbénou, and N. Pasteur, Evolution of resistance to insecticide in disease vectors, Genetics and evolution of infectious disease, pp.363-409, 2011.

T. E. Nkya, I. Akhouayri, W. Kisinza, and D. , Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects, Insect Biochem Mol Biol, vol.43, pp.407-416, 2013.

P. Labbé, T. Lenormand, and R. M. , On the worldwide spread of an insecticide resistance gene: a role for local selection, J Evol Biol, vol.18, pp.1471-1484, 2005.

J. G. Scott, M. H. Yoshimizu, and S. Kasai, Pyrethroid resistance in Culex pipiens mosquitoes, Pestic Biochem Physiol, vol.120, pp.68-76, 2015.

P. Milesi, B. S. Assogba, C. M. Atyame, N. Pocquet, A. Berthomieu et al., The evolutionary fate of heterogeneous gene duplications: a precarious overdominant equilibrium between environment, sublethality and complementation, Mol Ecol, vol.27, pp.493-507, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01944241

Q. Xu, H. Liu, L. Zhang, and N. Liu, Resistance in the mosquito, Culex quinquefasciatus, and possible mechanisms for resistance, Pest Manag Sci Former Pestic Sci, vol.61, pp.1096-1102, 2005.

M. Weill, G. Lutfalla, K. Mogensen, F. Chandre, A. Berthomieu et al., Comparative genomics: Insecticide resistance in mosquito vectors, Nature, vol.423, p.136, 2003.

H. Alout, A. Berthomieu, and A. Hadjivassilis, A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus, Insect Biochem Mol Biol, vol.37, pp.41-47, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00367134

M. L. Tantely, P. Tortosa, H. Alout, C. Berticat, A. Berthomieu et al., Insecticide resistance in Culex pipiens quinquefasciatus and Aedes albopictus mosquitoes from La Reunion Island, Insect Biochem Mol Biol, vol.40, pp.317-324, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01274621

C. Golenda and A. J. Forgash, Fenvalerate cross-resistance in a resmethrin-selected strain of the house fly (Diptera: Muscidae), J Econ Entomol, vol.78, pp.19-24, 1985.

J. G. Scott, Cross-resistance to the biological insecticide abamectin in pyrethroidresistant house flies, Pestic Biochem Physiol, vol.34, pp.27-31, 1989.

J. Bisset, M. Rodriguez, A. Soca, N. Pasteur, and R. M. , Cross-resistance to pyrethroid and organophosphorus insecticides in the southern house mosquito (Diptera: Culicidae) from Cuba, J Med Entomol, vol.34, pp.244-246, 1997.
URL : https://hal.archives-ouvertes.fr/halsde-00201471

C. M. Atyame, H. Alout, L. Mousson, M. Vazeille, M. Diallo et al., Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus, Proc R Soc B, vol.286, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02098394

, WHO, Global report on insecticide resistance in malaria vectors, pp.2010-2016, 2018.

A. Benjelloun, M. Harrak, P. Calistri, C. Loutfi, H. Kabbaj et al.,

M. L. Danzetta and B. Belkadi, Seroprevalence of West Nile virus in horses in different Moroccan regions, Vet Med Sci, vol.3, pp.198-207, 2017.

H. Alout, P. Labbé, and N. Pasteur, High incidence of ace-1 duplicated haplotypes in resistant Culex pipiens mosquitoes from Algeria, Insect Biochem Mol Biol, vol.41, pp.29-35, 2011.
URL : https://hal.archives-ouvertes.fr/halsde-00633660

F. Tmimi, C. Faraj, M. Bkhache, K. Mounaji, A. Failloux et al., Insecticide resistance and target site mutations (G119S ace-1 and L1014F kdr) of Culex pipiens in Morocco, Parasit Vectors, vol.11, p.51, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01708534

G. P. Georghiou, R. L. Metcalf, and F. E. Gidden, Carbamate-resistance in mosquitos: Selection of Culex pipiens fatigans Wiedemann (= C. quinquefasciatus Say) for resistance to Baygon, Bull World Health Organ, vol.35, p.691, 1966.

C. M. Bahnck and D. M. Fonseca, Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L.(Diptera: Culicidae) and hybrid populations, Am J Trop Med Hyg, vol.75, pp.251-255, 2006.

D. Martinez-torres, C. Chevillon, A. Brun-barale, J. B. Bergé, N. Pasteur et al., Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L mosquitoes, Pestic Sci, vol.55, pp.1012-1020, 1999.
URL : https://hal.archives-ouvertes.fr/halsde-00201889

M. Weill, C. Malcolm, F. Chandre, K. Mogensen, A. Berthomieu et al.,

M. Raymond, The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors, Insect Mol Biol, vol.13, pp.1-7, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01946057

C. Berticat, M. Dubois, M. Marquine, C. Chevillon, and R. M. , A molecular test to identify resistance alleles at the amplified esterase locus in the mosquito Culex pipiens, Pest Manag Sci Former Pestic Sci, vol.56, pp.727-731, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02188813

M. Raymond and . Genepop, ): population genetics software for exact tests and ecumenicism, J Hered, vol.1, issue.2, pp.248-249, 1995.

B. S. Weir and C. C. Cockerham, Estimating F-statistics for the analysis of population structure, evolution, vol.38, pp.1358-1370, 1984.

P. Milesi, T. Lenormand, C. Lagneau, M. Weill, and P. Labbé, Relating fitness to longterm environmental variations in natura, Mol Ecol, vol.25, pp.5483-5499, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01944379

C. S. Mouhamadou, S. S. De-souza, B. K. Fodjo, M. G. Zoh, N. K. Bli et al., Evidence of insecticide resistance selection in wild Anopheles coluzzii mosquitoes due to agricultural pesticide use, Infect Dis Poverty, vol.8, 2019.

A. Tabbabi, J. Daaboub, A. Laamari, R. Ben-cheikh, M. Feriani et al., Impacts of agricultural practices on pyrethroid resistance in Culex pipiens pipiens, an important vector of human diseases, from Tunisia, Malaysian Society of Parasitology and Tropical Medicine, vol.36, pp.542-549, 2019.

F. V. Brown, R. Logan, and C. S. Wilding, Carbamate resistance in a UK population of the halophilic mosquito Ochlerotatus detritus implicates selection by agricultural usage of insecticide, Int J Pest Manag, vol.65, pp.284-292, 2019.

M. Coleman, J. Hemingway, K. A. Gleave, A. Wiebe, P. W. Gething et al., Developing global maps of insecticide resistance risk to improve vector control, Malar J, vol.16, 2017.

M. Bkhache, F. Tmimi, O. Charafeddine, C. Faraj, A. Failloux et al., First report of L1014F-kdr mutation in Culex pipiens complex from Morocco, Parasit Vectors, vol.9, p.644, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01468112

H. Alout, P. Labbé, A. Berthomieu, and N. Pasteur, Multiple duplications of the rare ace-1 mutation F290V in Culex pipiens natural populations, Insect Biochem Mol Biol, vol.39, pp.884-891, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01938164

H. Alout, A. Berthomieu, F. Cui, Y. Tan, C. Berticat et al., Different amino-acid substitutions confer insecticide resistance through acetylcholinesterase 1 insensitivity in Culex vishnui and Culex tritaeniorhynchus (Diptera: Culicidae) from China, J Med Entomol, vol.44, pp.463-469, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01945512

M. Bkhache, F. Tmimi, O. Charafeddine, O. B. Filali, M. Lemrani et al., G119S ace-1 mutation conferring insecticide resistance detected in the Culex pipiens complex in Morocco, Pest Manag Sci, vol.75, pp.286-291, 2019.

P. Labbé, A. Berthomieu, C. Berticat, H. Alout, M. Raymond et al., Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito Culex pipiens, Mol Biol Evol, vol.24, pp.1056-1067, 2007.

M. A. Osta, Z. J. Rizk, P. Labbé, M. Weill, and K. Knio, Insecticide resistance to organophosphates in Culex pipiens complex from Lebanon, Parasit Vectors, vol.5, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01938155

P. Labbé, P. Milesi, A. Yébakima, N. Pasteur, M. Weill et al., Gene-dosage effects on fitness in recent adaptive duplications: ace-1 in the mosquito Culex pipiens, Evolution, vol.68, pp.2092-2101, 2014.

B. S. Assogba, L. S. Djogbénou, P. Milesi, A. Berthomieu, J. Perez et al., An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito, Sci Rep, vol.5, pp.1-12, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01938129

P. Milesi, M. Weill, T. Lenormand, and P. Labbé, Heterogeneous gene duplications can be adaptive because they permanently associate overdominant alleles, Evol Lett, vol.1, pp.169-180, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01938023

M. Raymond, C. Berticat, M. Weill, N. Pasteur, and C. Chevillon, Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation?, Microevolution Rate, Pattern, Process, pp.287-296, 2001.
URL : https://hal.archives-ouvertes.fr/halsde-00186377

N. Assaid, L. Mousson, S. Moutailler, S. Arich, K. Akarid et al., Evidence of circulation of West Nile virus in Culex pipiens mosquitoes and horses in Morocco, Acta Trop, vol.205, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02495904