M. E. Dinger, K. C. Pang, T. R. Mercer, and J. S. Mattick, Differentiating protein-coding and noncoding rna: challenges and ambiguities, PLoS Computational Biol, vol.4, p.1000176, 2008.

G. A. Brar and J. S. Weissman, Ribosome profiling reveals the what, when, where and how of protein synthesis, Nat. Rev. Mol. Cell Biol, vol.16, pp.651-664, 2015.

B. Vanderperre, J. F. Lucier, C. Bissonnette, J. Motard, G. Tremblay et al., Direct detection of alternative open reading frames translation products in human significantly expands the proteome, PloS ONE, vol.8, p.70698, 2013.

G. Menschaert, W. Van-criekinge, T. Notelaers, A. Koch, J. Crappé et al., Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events, Mol. Cell. Proteomics, vol.12, pp.1780-1790, 2013.

J. Ma, C. C. Ward, I. Jungreis, S. A. Slavoff, A. G. Schwaid et al., Discovery of human sorf-encoded polypeptides (seps) in cell lines and tissue, J. Proteome Res, vol.13, pp.1757-1765, 2014.

A. Koch, G. Gawron, S. Steyaert, E. Ndah, J. Crappé et al., A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites, Proteomics, vol.14, pp.2688-2698, 2014.

A. A. Bazzini, T. G. Johnstone, R. Christiano, S. D. Mackowiak, B. Obermayer et al., Identification of small orfs in vertebrates using ribosome footprinting and evolutionary conservation, EMBO J, p.201488411, 2014.

A. I. Nesvizhskii, Proteogenomics: concepts, applications and computational strategies, Nat. Methods, vol.11, pp.1114-1125, 2014.

J. Ma, J. K. Diedrich, I. Jungreis, C. Donaldson, J. Vaughan et al., Improved identification and analysis of small open reading frame encoded polypeptides, Anal. Chem, vol.88, pp.3967-3975, 2016.

V. Olexiouk and G. Menschaert, Identification of small novel coding sequences, a proteogenomics endeavor, Proteogenomics, vol.926, pp.49-64, 2016.

N. T. Ingolia, S. Ghaemmaghami, J. R. Newman, and J. S. Weissman, Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling, Science, vol.324, pp.218-223, 2009.

H. Mouilleron, V. Delcourt, and X. Roucou, Death of a dogma: eukaryotic mrnas can code for more than one protein, Nucleic Acids Res, vol.44, pp.14-23, 2015.

N. T. Ingolia, Ribosome footprint profiling of translation throughout the genome, Cell, vol.165, pp.22-33, 2016.

V. Delcourt, A. Staskevicius, M. Salzet, I. Fournier, and X. Roucou, Small proteins encoded by unannotated orfs are rising stars of the proteome, confirming shortcomings in genome annotations and current vision of an mrna, Proteomics, vol.18, p.1700058, 2017.

C. S. Palmer, L. D. Osellame, D. Laine, O. S. Koutsopoulos, A. E. Frazier et al., Mid49 and mid51, new components of the mitochondrial fission machinery, EMBO Reports, vol.12, pp.565-573, 2011.

Z. Zhang, L. Liu, S. Wu, and X. , D. Drp1, mff, fis1, and mid51 are coordinated to mediate mitochondrial fission during uv irradiation-induced apoptosis, FASEB J, vol.30, pp.466-476, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-00367140

L. D. Osellame, A. P. Singh, D. A. Stroud, C. S. Palmer, D. Stojanovski et al., Cooperative and independent roles of the drp1 adaptors mff, mid49 and mid51 in mitochondrial fission, J. Cell Sci, vol.129, pp.2170-2181, 2016.

S. Lee, B. Liu, S. Lee, S. X. Huang, B. Shen et al., Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution, Proc. Natl. Acad. Sci. USA, vol.109, pp.2424-2432, 2012.

M. S. Kim, S. M. Pinto, D. Getnet, R. S. Nirujogi, S. S. Manda et al., Nature, vol.509, pp.575-581

J. Crappé, E. Ndah, A. Koch, S. Steyaert, D. Gawron et al., Proteoformer: deep proteome coverage through ribosome profiling and ms integration, Nucleic Acids Res, vol.43, pp.29-29, 2014.

D. E. Andreev, P. B. O'connor, C. Fahey, E. M. Kenny, I. M. Terenin et al., Translation of 5? leaders is pervasive in genes resistant to eif2 repression, vol.4, p.3971, 2015.

C. Sidrauski, A. M. Mcgeachy, N. T. Ingolia, and P. Walter, The small molecule isrib reverses the effects of eif2? phosphorylation on translation and stress granule assembly, Elife, vol.4, p.5033, 2015.

L. Calviello, N. Mukherjee, E. Wyler, H. Zauber, A. Hirsekorn et al., Detecting actively translated open reading frames in ribosome profiling data, Nat. Methods, vol.13, p.165

S. Samandi, A. V. Roy, V. Delcourt, J. F. Lucier, J. Gagnon et al., Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins, vol.6, p.27860

A. Brown, S. Rathore, D. Kimanius, S. Aibara, X. C. Bai et al., Structures of the human mitochondrial ribosome in native states of assembly, Nat. Structural Mol. Biol, vol.24, pp.866-869, 2017.

D. G. Gibson, L. Young, R. Y. Chuang, J. C. Venter, C. A. Hutchison et al., Enzymatic assembly of dna molecules up to several hundred kilobases, Nat. Methods, vol.6, pp.343-345, 2009.

I. M. Cheeseman and A. Desai, A combined approach for the localization and tandem affinity purification of protein complexes from metazoans, Sci. STKE, p.1, 2005.

B. Antonsson, S. Montessuit, B. Sanchez, and J. C. Martinou, Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells, J. Biol. Chem, vol.276, pp.11615-11623, 2001.

J. R. Wisniewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nat. Methods, vol.6, p.359, 2009.

S. A. Gerber, J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi, Absolute quantification of proteins and phosphoproteins from cell lysates by tandem ms, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.6940-6945, 2003.

R. Wu, W. Haas, N. Dephoure, E. L. Huttlin, B. Zhai et al., A large-scale method to measure absolute protein phosphorylation stoichiometries, Nat. Methods, vol.88, pp.677-683, 2011.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: a peptide search engine integrated into the maxquant environment, J. Proteome Res, vol.10, pp.1794-1805, 2011.

J. Cox and M. Mann, Maxquant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

J. E. Elias and S. P. Gygi, Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry, Nat. Methods, vol.43, pp.207-214, 2007.

. Uniprot, Uniprot: the universal protein knowledgebase, Nucleic Acids Res, vol.45, pp.158-169

M. Schaeffer, A. Gateau, D. Teixeira, P. A. Michel, M. Zahn-zabal et al., The nextprot peptide uniqueness checker: a tool for the proteomics community, Bioinformatics, vol.33, pp.3471-3472

B. Maclean, D. M. Tomazela, N. Shulman, M. Chambers, G. L. Finney et al., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments, Bioinformatics, vol.26, pp.966-968

S. Gallien, A. Bourmaud, S. Y. Kim, and D. B. , Technical considerations for largescale parallel reaction monitoring analysis, J. Proteomics, vol.100, pp.147-159, 2014.

K. X. Wan, I. Vidavsky, and M. L. Gross, Comparing similar spectra: from similarity index to spectral contrast angle, J. Am. Soc. Mass Spectrometry, vol.13, pp.85-88, 2002.

J. A. Vizcaíno, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al., update of the pride database and its related tools, Nucleic Acids Res, vol.44, pp.447-456, 2015.

F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott et al., Genome engineering using the crispr-cas9 system, Nature Protocols, vol.8, pp.2281-2308, 2013.

J. G. Doench, N. Fusi, M. Sullender, M. Hegde, E. W. Vaimberg et al., Optimized sgrna design to maximize activity and minimize off-target effects of crispr-cas9, Nat. Biotechnol, vol.34, pp.184-191, 2016.

M. Stemmer, T. Thumberger, M. Del-sol-keyer, J. Wittbrodt, and M. J. , Cctop: an intuitive, flexible and reliable crispr/cas9 target prediction tool, PloS ONE, vol.10, p.124633, 2015.

H. Schä-gger, Tricine-SDS-PAGE, Nat. Protocols, vol.1, pp.16-22, 2006.

. R-core-team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2014.

H. Wickham, ggplot2: elegant graphics for data analysis, 2016.

A. M. Michel, G. Fox, A. Kiran, C. De-bo, P. B. O'connor et al., Gwips-viz: development of a ribo-seq genome browser, Nucleic Acids Res, vol.42, pp.859-864, 2013.

M. Karimzadeh, C. Ernst, A. Kundaje, and M. M. Hoffman, Umap and bismap: quantifying genome and methylome mappability, p.95463, 2016.

B. Kuster, M. Schirle, P. Mallick, A. , and R. , Scoring proteomes with proteotypic peptide probes, Nat. Reviews Mol. Cell Biol, vol.6, pp.577-583, 2005.

P. Mallick, M. Schirle, S. S. Chen, M. R. Flory, H. Lee et al., Computational prediction of proteotypic peptides for quantitative proteomics, Nat. Biotechnol, vol.25, pp.125-131, 2007.

M. Wilhelm, J. Schlegl, H. Hahne, A. M. Gholami, M. Lieberenz et al., Mass-spectrometry-based draft of the human proteome, Nature, vol.509, p.582, 2014.

D. P. Zolg, M. Wilhelm, K. Schnatbaum, J. Zerweck, T. Knaute et al., Building proteometools based on a complete synthetic human proteome, Nat. Methods, vol.14, pp.259-262, 2017.

A. Bourmaud, S. Gallien, and B. Domon, Parallel reaction monitoring using quadrupoleorbitrap mass spectrometer: Principle and applications, Proteomics, vol.16, pp.2146-2159, 2016.

S. Gallien, S. Y. Kim, and B. Domon, Large-scale targeted proteomics using internal standard triggered-parallel reaction monitoring (is-prm), Mol. Cell. Proteomics, vol.14, pp.1630-1644, 2015.

R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval et al., Crispr provides acquired resistance against viruses in prokaryotes, Science, vol.315, pp.1709-1712, 2007.

S. K. Young and R. C. Wek, Upstream open reading frames differentially regulate gene-specific translation in the integrated stress response, J. Biol. Chem, p.116

. M. Kozak, Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes, Mol. Cell. Biol, vol.7, pp.3438-3445, 1987.

B. G. Luukkonen, W. Tan, and S. Schwartz, Efficiency of reinitiation of translation on human immunodeficiency virus type 1 mrnas is determined by the length of the upstream open reading frame and by intercistronic distance, J. Virol, vol.69, pp.4086-4094, 1995.

M. Kozak, Constraints on reinitiation of translation in mammals, Nucleic Acids Res, vol.29, pp.5226-5232, 2001.

C. Barbosa, I. Peixeiro, and L. Romã-o, Gene expression regulation by upstream open reading frames and human disease, PLoS Genetics, vol.9, p.1003529

G. Storz, Y. I. Wolf, and K. S. Ramamurthi, Small proteins can no longer be ignored, Ann. Rev. Biochem, vol.83, pp.753-777, 2014.

M. A. Brunet, S. A. Levesque, D. J. Hunting, A. A. Cohen, and X. Roucou, Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship, Genome Res, vol.28, pp.609-624, 2018.

P. V. Hornbeck, B. Zhang, B. Murray, J. M. Kornhauser, V. Latham et al., 2014: mutations, ptms and recalibrations, Nucleic Acids Res, vol.43, pp.512-520