P. Craig and E. Larrieu, Control of cystic echinococcosis/hydatidosis, Adv Parasitol, vol.61, pp.1863-2002, 2006.

D. Heath, Immunobiology of Echinococcus infections The biology of Echinococcus and hydatid disease, pp.164-188, 1986.

D. Heath, Immunology of Echinococcus infections, Echinococcus and hydatid disease. Wallingford: CAB International, pp.183-200, 1995.

J. Smyth and D. Mcmanus, The physiology and biochemistry of cestodes, 1989.
DOI : 10.1017/CBO9780511525841

R. Thompson, Biology and Systematics of Echinococcus, Echinococcus and hydatid disease. Wallingford: CAB International, pp.1-50, 1995.
DOI : 10.1016/bs.apar.2016.07.001

C. Fernandez, W. Gregory, P. Loke, and R. Maizels, Full-length-enriched cDNA libraries from Echinococcus granulosus contain separate populations of oligo-capped and trans-spliced transcripts and a high level of predicted signal peptide sequences, Molecular and Biochemical Parasitology, vol.122, issue.2, pp.171-180, 2002.
DOI : 10.1016/S0166-6851(02)00098-1

N. Rawlings, D. Tolle, and A. Barrett, Evolutionary families of peptidase inhibitors, Biochemical Journal, vol.378, issue.3, pp.705-716, 2004.
DOI : 10.1042/bj20031825

N. Rawlings, F. Morton, C. Kok, J. Kong, and A. Barrett, MEROPS: the peptidase database, Nucleic Acids Research, vol.36, issue.Database, pp.320-325, 2008.
DOI : 10.1093/nar/gkm954

URL : http://doi.org/10.1093/nar/gkj089

M. Laskowski, . Jr, and I. Kato, Protein Inhibitors of Proteinases, Annual Review of Biochemistry, vol.49, issue.1, pp.593-626, 1980.
DOI : 10.1146/annurev.bi.49.070180.003113

B. Fry, From genome to "venome": Molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins, Genome Research, vol.15, issue.3, pp.403-420, 2005.
DOI : 10.1101/gr.3228405

H. Schweitz, T. Bruhn, E. Guillemare, D. Moinier, and J. Lancelin, Kalicludines and Kaliseptine: TWO DIFFERENT CLASSES OF SEA ANEMONE TOXINS FOR VOLTAGE-SENSITIVE K+ CHANNELS, Journal of Biological Chemistry, vol.270, issue.42, pp.25121-25126, 1995.
DOI : 10.1074/jbc.270.42.25121

Y. Andreev, S. Kozlov, S. Koshelev, E. Ivanova, and M. Monastyrnaya, Analgesic Compound from Sea Anemone Heteractis crispa Is the First Polypeptide Inhibitor of Vanilloid Receptor 1 (TRPV1), Journal of Biological Chemistry, vol.283, issue.35, pp.23914-23921, 2008.
DOI : 10.1074/jbc.M800776200

M. Bayrhuber, V. Vijayan, M. Ferber, R. Graf, and J. Korukottu, Conkunitzin-S1 Is the First Member of a New Kunitz-type Neurotoxin Family, Journal of Biological Chemistry, vol.280, issue.25, pp.23766-23770, 2005.
DOI : 10.1074/jbc.C500064200

C. Yuan, Q. He, K. Peng, J. Diao, and L. Jiang, Discovery of a Distinct Superfamily of Kunitz-Type Toxin (KTT) from Tarantulas, PLoS ONE, vol.5, issue.10, p.3414, 2008.
DOI : 10.1371/journal.pone.0003414.s014

A. Harvey, Twenty years of dendrotoxins, Toxicon, vol.39, issue.1, pp.15-26, 2001.
DOI : 10.1016/S0041-0101(00)00162-8

I. Schechter and A. Berger, On the size of the active site in proteases. I. Papain, Biochemical and Biophysical Research Communications, vol.27, issue.2, pp.157-162, 1968.
DOI : 10.1016/S0006-291X(67)80055-X

S. Kamei, L. Petersen, C. Sprecher, D. Foster, and W. Kisiel, Inhibitory Properties of Human Recombinant Arg24???Gln Type-2 Tissue Factor Pathway Inhibitor (R24Q TFPI-2), Thrombosis Research, vol.94, issue.3, pp.147-152, 1999.
DOI : 10.1016/S0049-3848(98)00205-9

D. Krowarsch, M. Zakrzewska, A. Smalas, and J. Otlewski, Structure-Function Relationships in Serine Protease-Bovine Pancreatic Trypsin Inhibitor Interaction, Protein & Peptide Letters, vol.12, issue.5, pp.403-407, 2005.
DOI : 10.2174/0929866054395275

J. Watanabe, H. Wakaguri, M. Sasaki, Y. Suzuki, and S. Sugano, Comparasite: a database for comparative study of transcriptomes of parasites defined by full-length cDNAs, Nucleic Acids Research, vol.35, issue.Database, pp.431-438, 2007.
DOI : 10.1093/nar/gkl1039

H. Aguilar-diaz, R. Bobes, J. Carrero, R. Camacho-carranza, and C. Cervantes, The genome project of Taenia solium, Parasitology International, vol.55, pp.127-130, 2006.
DOI : 10.1016/j.parint.2005.11.020

E. Moses and H. Hinz, Basic pancreatic trypsin inhibitor has unusual thermodynamic stability parameters, Journal of Molecular Biology, vol.170, issue.3, pp.765-776, 1983.
DOI : 10.1016/S0022-2836(83)80130-2

C. Chen, C. Hsu, N. Su, Y. Lin, and S. Chiou, Solution Structure of a Kunitz-type Chymotrypsin Inhibitor Isolated from the Elapid Snake Bungarus fasciatus, Journal of Biological Chemistry, vol.276, issue.48, pp.45079-45087, 2001.
DOI : 10.1074/jbc.M106182200

F. Wu and M. Laskowski, Action of the naturally occurring trypsin inhibitors against chymotrypsins alpha and beta, J Biol Chem, vol.213, pp.609-619, 1955.

J. Morrison, The slow-binding and slow, tight-binding inhibition of enzyme-catalysed reactions, Trends in Biochemical Sciences, vol.7, issue.3, pp.102-105, 1982.
DOI : 10.1016/0968-0004(82)90157-8

G. Bell, M. Smith, and J. , Short-term selection for recombination among mutually antagonistic species, Nature, vol.328, issue.6125, pp.66-68, 1987.
DOI : 10.1038/328066a0

X. Zang and R. Maizels, Serine proteinase inhibitors from nematodes and the arms race between host and pathogen, Trends in Biochemical Sciences, vol.26, issue.3, pp.191-197, 2001.
DOI : 10.1016/S0968-0004(00)01761-8

S. Verjovski-almeida, R. Demarco, E. Martins, P. Guimaraes, and E. Ojopi, Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni, Nature Genetics, vol.35, issue.2, pp.148-157, 2003.
DOI : 10.1038/ng1237

W. Hu, Q. Yan, D. Shen, F. Liu, and Z. Zhu, Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource, Nature Genetics, vol.35, issue.2, pp.139-147, 2003.
DOI : 10.1038/ng1236

S. Robb, E. Ross, S. Alvarado, and A. , SmedGD: the Schmidtea mediterranea genome database, Nucleic Acids Research, vol.36, issue.Database, pp.599-606, 2008.
DOI : 10.1093/nar/gkm684

URL : http://doi.org/10.1093/nar/gkm684

J. Parkinson, C. Whitton, R. Schmid, M. Thomson, and M. Blaxter, NEMBASE: a resource for parasitic nematode ESTs, Nucleic Acids Research, vol.32, issue.90001, pp.427-430, 2004.
DOI : 10.1093/nar/gkh018

URL : http://doi.org/10.1093/nar/gkh018

J. Hawdon, B. Datu, and M. Crowell, Molecular Cloning of a Novel Multidomain Kunitz-Type Proteinase Inhibitor From the Hookworm Ancylostoma caninum, Journal of Parasitology, vol.89, issue.2, pp.402-407, 2003.
DOI : 10.1645/0022-3395(2003)089[0402:MCOANM]2.0.CO;2

F. Kooyman, B. Van-balkom, E. De-vries, and J. Van-putten, Identification of a thrombospondin-like immunodominant and phosphorylcholine-containing glycoprotein (GP300) in Dictyocaulus viviparus and related nematodes, Molecular and Biochemical Parasitology, vol.163, issue.2, pp.85-94, 2009.
DOI : 10.1016/j.molbiopara.2008.09.012

M. Cappello, G. Vlasuk, P. Bergum, S. Huang, and P. Hotez, Ancylostoma caninum anticoagulant peptide: a hookworm-derived inhibitor of human coagulation factor Xa., Proceedings of the National Academy of Sciences, vol.92, issue.13, pp.6152-6156, 1995.
DOI : 10.1073/pnas.92.13.6152

A. Milstone, L. Harrison, R. Bungiro, P. Kuzmic, and M. Cappello, A Broad Spectrum Kunitz Type Serine Protease Inhibitor Secreted by the Hookworm Ancylostoma ceylanicum, Journal of Biological Chemistry, vol.275, issue.38, pp.29391-29399, 2000.
DOI : 10.1074/jbc.M002715200

P. Ascenzi, A. Bocedi, M. Bolognesi, A. Spallarossa, and M. Coletta, The Bovine Basic Pancreatic Trypsin Inhibitor (Kunitz Inhibitor): A Milestone Protein, Current Protein & Peptide Science, vol.4, issue.3, pp.231-251, 2003.
DOI : 10.2174/1389203033487180

H. Chand, A. Schmidt, S. Bajaj, and W. Kisiel, Structure-Function Analysis of the Reactive Site in the First Kunitz-type Domain of Human Tissue Factor Pathway Inhibitor-2, Journal of Biological Chemistry, vol.279, issue.17, pp.17500-17507, 2004.
DOI : 10.1074/jbc.M400802200

G. Broze, . Jr, and J. Miletich, Characterization of the inhibition of tissue factor in serum, Blood, vol.69, pp.150-155, 1987.

Z. Huang, T. Wun, G. Broze, and J. , Kinetics of factor Xa inhibition by tissue factor pathway inhibitor, J Biol Chem, vol.268, pp.26950-26955, 1993.

J. Vincent and M. Lazdunski, Trypsin-pancreatic trypsin inhibitor association. Dynamics of the interaction and role of disulfide bridges, Biochemistry, vol.11, issue.16, pp.2967-2977, 1972.
DOI : 10.1021/bi00766a007

K. Ohlsson and H. Tegner, Anionic and cationic dog trypsin. Isolation and partial characterization, Biochimica et Biophysica Acta (BBA) - Protein Structure, vol.317, issue.2, pp.328-337, 1973.
DOI : 10.1016/0005-2795(73)90228-6

S. Woodard, J. Mayor, M. Bailey, D. Barker, and R. Love, Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants, Biotechnology and Applied Biochemistry, vol.38, issue.2, pp.123-130, 2003.
DOI : 10.1042/BA20030026

J. Perona and C. Craik, Evolutionary Divergence of Substrate Specificity within the Chymotrypsin-like Serine Protease Fold, Journal of Biological Chemistry, vol.272, issue.48, pp.29987-29990, 1997.
DOI : 10.1074/jbc.272.48.29987

H. Outzen, G. Berglund, A. Smalas, and N. Willassen, Temperature and pH sensitivity of trypsins from atlantic salmon (Salmo salar) in comparison with bovine and porcine trypsin, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.115, issue.1, pp.33-45, 1996.
DOI : 10.1016/0305-0491(96)00081-8

A. Smalas, E. Heimstad, A. Hordvik, N. Willassen, and R. Male, Cold adaption of enzymes: Structural comparison between salmon and bovine trypsins, Proteins: Structure, Function, and Genetics, vol.20, issue.2, pp.149-166, 1994.
DOI : 10.1002/prot.340200205

D. Krowarsch, M. Dadlez, O. Buczek, I. Krokoszynska, and A. Smalas, Interscaffolding additivity: binding of P1 variants of bovine pancreatic trypsin inhibitor to four serine proteases, Journal of Molecular Biology, vol.289, issue.1, pp.175-186, 1999.
DOI : 10.1006/jmbi.1999.2757

R. Helland, I. Leiros, G. Berglund, N. Willassen, and A. Smalas, The crystal structure of anionic salmon trypsin in complex with bovine pancreatic trypsin inhibitor, European Journal of Biochemistry, vol.256, issue.2, pp.317-324, 1998.
DOI : 10.1046/j.1432-1327.1998.2560317.x

R. Huber, D. Kukla, W. Bode, P. Schwager, and K. Bartels, Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor, Journal of Molecular Biology, vol.89, issue.1, pp.73-101, 1974.
DOI : 10.1016/0022-2836(74)90163-6

T. Skarzynski, Crystal structure of ??-dendrotoxin from the green mamba venom and its comparison with the structure of bovine pancreatic trypsin inhibitor, Journal of Molecular Biology, vol.224, issue.3, pp.671-683, 1992.
DOI : 10.1016/0022-2836(92)90552-U

B. Arnoux, K. Merigeau, P. Saludjian, F. Norris, and K. Norris, The 1.6 A structure of Kunitz-type domain from the alpha 3 chain of human type VI collagen, J Mol Biol, vol.246, pp.609-617, 1995.
URL : https://hal.archives-ouvertes.fr/pasteur-00376448

E. Kohfeldt, W. Gohring, U. Mayer, M. Zweckstetter, and T. Holak, Conversion of the Kunitz-Type Module of Collagen VI into a Highly Active Trypsin Inhibitor by Site-Directed Mutagenesis, European Journal of Biochemistry, vol.4, issue.2, pp.333-340, 1996.
DOI : 10.1038/331528a0

L. Pritchard and M. Dufton, Evolutionary trace analysis of the Kunitz/BPTI family of proteins: functional divergence may have been based on conformational adjustment, Journal of Molecular Biology, vol.285, issue.4, pp.1589-1607, 1999.
DOI : 10.1006/jmbi.1998.2437

A. Sali and T. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

S. Gasparini, J. Danse, A. Lecoq, S. Pinkasfeld, and S. Zinn-justin, Delineation of the Functional Site of ??-Dendrotoxin: THE FUNCTIONAL TOPOGRAPHIES OF DENDROTOXINS ARE DIFFERENT BUT SHARE A CONSERVED CORE WITH THOSE OF OTHER Kv1 POTASSIUM CHANNEL-BLOCKING TOXINS, Journal of Biological Chemistry, vol.273, issue.39, pp.25393-25403, 1998.
DOI : 10.1074/jbc.273.39.25393

A. Harvey and B. Robertson, Dendrotoxins: Structure-Activity Relationships and Effects on Potassium Ion Channels, Current Medicinal Chemistry, vol.11, issue.23, pp.3065-3072, 2004.
DOI : 10.2174/0929867043363820

E. Katoh, H. Nishio, T. Inui, Y. Nishiuchi, and T. Kimura, Structural basis for the biological activity of dendrotoxin-I, a potent potassium channel blocker, Biopolymers, vol.13, issue.1, pp.44-57, 2000.
DOI : 10.1002/(SICI)1097-0282(200007)54:1<44::AID-BIP50>3.0.CO;2-Z

D. Kordis and F. Gubensek, Adaptive evolution of animal toxin multigene families, Gene, vol.261, issue.1, pp.43-52, 2000.
DOI : 10.1016/S0378-1119(00)00490-X

J. Parkinson, A. Anthony, J. Wasmuth, R. Schmid, and A. Hedley, PartiGene--constructing partial genomes, Bioinformatics, vol.20, issue.9, pp.1398-1404, 2004.
DOI : 10.1093/bioinformatics/bth101

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Boguski, T. Lowe, and C. Tolstoshev, dbEST ??? database for ???expressed sequence tags???, Nature Genetics, vol.35, issue.4, pp.332-333, 1993.
DOI : 10.1038/ng0393-266

J. Parkinson, D. Guiliano, and M. Blaxter, Making sense of EST sequences by CLOBBing them, BMC Bioinformatics, vol.3, issue.1, p.31, 2002.
DOI : 10.1186/1471-2105-3-31

H. Schagger and G. Von-jagow, Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Analytical Biochemistry, vol.166, issue.2, pp.368-379, 1987.
DOI : 10.1016/0003-2697(87)90587-2

T. Waritani, Y. Okuno, Y. Ashida, R. Tsuchiya, and K. Kobayashi, Development and characterization of monoclonal antibodies against canine trypsin, Veterinary Immunology and Immunopathology, vol.80, issue.3-4, pp.333-338, 2001.
DOI : 10.1016/S0165-2427(01)00293-8

J. Vincent and M. Lazdunski, The Interaction between alpha-Chymotrypsin and Pancreatic Trypsin Inhibitor (Kunitz Inhibitor). Kinetic and Thermodynamic Properties, European Journal of Biochemistry, vol.38, issue.2, pp.365-372, 1973.
DOI : 10.1016/0022-2836(69)90426-4

J. Morrison, Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors, Biochimica et Biophysica Acta (BBA) - Enzymology, vol.185, issue.2, pp.269-286, 1969.
DOI : 10.1016/0005-2744(69)90420-3

W. Greco and M. Hakala, Evaluation of methods for estimating the dissociation constant of tight binding enzyme inhibitors, J Biol Chem, vol.254, pp.12104-12109, 1979.

J. Williams and J. Morrison, [17] The kinetics of reversible tight-binding inhibition, Methods Enzymol, vol.63, pp.437-467, 1979.
DOI : 10.1016/0076-6879(79)63019-7

J. Morrison and C. Walsh, The Behavior and Significance of Slow-Binding Enzyme Inhibitors, Adv Enzymol Relat Areas Mol Biol, vol.25, pp.201-301, 1988.
DOI : 10.1002/9780470123072.ch5

M. Larkin, G. Blackshields, N. Brown, R. Chenna, and P. Mcgettigan, Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, issue.21, pp.2947-2948, 2007.
DOI : 10.1093/bioinformatics/btm404

URL : https://hal.archives-ouvertes.fr/hal-00206210

N. Baker, D. Sept, S. Joseph, M. Holst, and J. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.10037-10041, 2001.
DOI : 10.1073/pnas.181342398

P. Gouet, X. Robert, and E. Courcelle, ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins, Nucleic Acids Research, vol.31, issue.13, pp.3320-3323, 2003.
DOI : 10.1093/nar/gkg556

URL : https://hal.archives-ouvertes.fr/hal-00314281

K. Tamura, J. Dudley, M. Nei, and S. Kumar, MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0, Molecular Biology and Evolution, vol.24, issue.8, pp.1596-1599, 2007.
DOI : 10.1093/molbev/msm092

URL : http://mbe.oxfordjournals.org/cgi/content/short/24/8/1596