Y. Nagai, Protease-dependent virus tropism and pathogenicity, Trends in Microbiology, vol.1, issue.3, pp.81-87, 1993.
DOI : 10.1016/0966-842X(93)90112-5

H. Klenk and W. Garten, Host cell proteases controlling virus pathogenicity, Trends in Microbiology, vol.2, issue.2, pp.39-43, 1994.
DOI : 10.1016/0966-842X(94)90123-6

J. Mccune, L. Rabin, M. Feinberg, M. Lieberman, and J. Kosek, Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus, Cell, vol.53, issue.1, pp.55-67, 1988.
DOI : 10.1016/0092-8674(88)90487-4

S. Lazarowitz and P. Choppin, Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide, Virology, vol.68, issue.2, pp.440-454, 1975.
DOI : 10.1016/0042-6822(75)90285-8

H. Kido, M. Murakami, K. Oba, Y. Chen, and T. Towatari, Cellular proteinases trigger the infectivity of the influenza A and Sendai viruses, Mol Cells, vol.9, pp.235-244, 1999.

H. Klenk and R. Rott, The Molecular Biology of Influenza Virus Pathogenicity, Adv Virus Res, vol.34, pp.247-281, 1988.
DOI : 10.1016/S0065-3527(08)60520-5

M. Tashiro and M. Homma, Evidence of proteolytic activation of Sendai virus in mouse lung, Archives of Virology, vol.29, issue.2-4, pp.127-137, 1983.
DOI : 10.1007/BF01309262

W. Garten, W. Berk, Y. Nagai, R. Rott, and H. Klenk, Mutational Changes of the Protease Susceptibility of Glycoprotein F of Newcastle Disease Virus: Effects on Pathogenicity, Journal of General Virology, vol.50, issue.1, pp.135-147, 1980.
DOI : 10.1099/0022-1317-50-1-135

H. Kido, Y. Yokogoshi, K. Sakai, M. Tashiro, and Y. Kishino, Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein, J Biol Chem, vol.267, pp.13573-13579, 1992.

M. Murakami, T. Towatari, M. Ohuchi, M. Shiota, and M. Akao, Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad-spectrum influenza A viruses and Sendai virus, European Journal of Biochemistry, vol.59, issue.10, pp.2847-2855, 2001.
DOI : 10.1046/j.1432-1327.2001.02166.x

T. Towatari, M. Ide, K. Ohba, Y. Chiba, and M. Murakami, Identification of ectopic anionic trypsin???I in rat lungs potentiating pneumotropic virus infectivity and increased enzyme level after virus infection, European Journal of Biochemistry, vol.144, issue.10, pp.2613-2621, 2002.
DOI : 10.1046/j.1432-1033.2002.02937.x

Y. Chen, M. Shiota, M. Ohuchi, T. Towatari, and J. Tashiro, Mast cell tryptase from pig lungs triggers infection by pneumotropic Sendai and influenza A viruses, European Journal of Biochemistry, vol.364, issue.11, pp.3189-3197, 2000.
DOI : 10.1046/j.1432-1327.2000.01346.x

M. Sato, S. Yoshida, K. Iida, T. Tomozawa, and H. Kido, A Novel Influenza A Virus Activating Enzyme from Porcine Lung: Purification and Characterization, Biological Chemistry, vol.384, issue.2, pp.219-227, 2003.
DOI : 10.1515/BC.2003.024

J. Storz, R. Rott, and G. Kaluza, Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment, Infect Immun, vol.31, pp.1214-1222, 1981.

D. Gaertner, A. Smith, F. Paturzo, and R. Jacoby, Susceptibility of rodent cell lines to rat coronaviruses and differential enhancement by trypsin or DEAE-dextran, Archives of Virology, vol.40, issue.1-2, pp.57-66, 1991.
DOI : 10.1007/BF01311303

Y. Yamada, K. Takimoto, M. Yabe, and F. Taguchi, Requirement of Proteolytic Cleavage of the Murine Coronavirus MHV-2 Spike Protein for Fusion Activity, Adv Exp Med Biol, vol.440, pp.89-93, 1998.
DOI : 10.1007/978-1-4615-5331-1_12

M. Jackwood, D. Hilt, S. Callison, C. Lee, and H. Plaza, Spike Glycoprotein Cleavage Recognition Site Analysis of Infectious Bronchitis Virus, Avian Diseases, vol.45, issue.2, pp.366-372, 2001.
DOI : 10.2307/1592976

M. Frana, J. Behnke, L. Sturman, and K. Holmes, Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion, J Virol, vol.56, pp.912-920, 1985.

J. Storz, X. Zhang, and R. Rott, Comparison of hemagglutinating, receptor-destroying, and acetylesterase activities of avirulent and virulent bovine coronavirus strains, Archives of Virology, vol.185, issue.1-4, pp.193-204, 1992.
DOI : 10.1007/BF01309637

J. Gombold, S. Hingley, and S. Weiss, Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal, J Virol, vol.67, pp.4504-4512, 1993.

L. Sturman, C. Ricard, and K. Holmes, Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90 K cleavage fragments, J Virol, vol.56, pp.904-911, 1985.

P. Rota, M. Oberste, S. Monroe, W. Nix, and R. Campagnoli, Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome, Science, vol.300, issue.5624, pp.1394-1399, 2003.
DOI : 10.1126/science.1085952

G. Simmons, J. Reeves, A. Rennekamp, S. Amberg, and A. Piefer, Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry, Proceedings of the National Academy of Sciences, vol.101, issue.12, pp.4240-4245, 2004.
DOI : 10.1073/pnas.0306446101

S. Matsuyama, M. Ujike, S. Morikawa, M. Tashiro, and F. Taguchi, Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection, Proceedings of the National Academy of Sciences, vol.102, issue.35, pp.12543-12547, 2005.
DOI : 10.1073/pnas.0503203102

H. Klenk, R. Rott, M. Orlich, and J. Blodorn, Activation of influenza A viruses by trypsin treatment, Virology, vol.68, issue.2, pp.426-439, 1975.
DOI : 10.1016/0042-6822(75)90284-6

D. Beniac, S. Devarennes, A. Andonov, R. He, and T. Booth, Conformational Reorganization of the SARS Coronavirus Spike Following Receptor Binding: Implications for Membrane Fusion, PLoS ONE, vol.25, issue.10, p.1082, 2007.
DOI : 10.1371/journal.pone.0001082.s002

S. Belouzard, V. Chu, and G. Whittaker, Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites, Proceedings of the National Academy of Sciences, vol.106, issue.14, pp.5871-5876, 2009.
DOI : 10.1073/pnas.0809524106

I. Yu, Y. Li, T. Wong, W. Tam, and A. Chan, Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus, New England Journal of Medicine, vol.350, issue.17, pp.1731-1739, 2004.
DOI : 10.1056/NEJMoa032867

J. Nicholls, L. Poon, K. Lee, W. Ng, and S. Lai, Lung pathology of fatal severe acute respiratory syndrome, The Lancet, vol.361, issue.9371, pp.1773-1778, 2003.
DOI : 10.1016/S0140-6736(03)13413-7

Y. Nie, P. Wang, X. Shi, G. Wang, and J. Chen, Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression, Biochemical and Biophysical Research Communications, vol.321, issue.4, pp.994-1000, 2004.
DOI : 10.1016/j.bbrc.2004.07.060

H. Jia, D. Look, L. Shi, M. Hickey, and L. Pewe, ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia, Journal of Virology, vol.79, issue.23, pp.14614-14621, 2005.
DOI : 10.1128/JVI.79.23.14614-14621.2005

F. Li, W. Li, M. Farzan, and S. Harrison, Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor, Science, vol.309, issue.5742, pp.1864-1868, 2005.
DOI : 10.1126/science.1116480

Y. Kam, F. Kien, A. Roberts, Y. Cheung, and E. Lamirande, Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate Fc??RII-dependent entry into B cells in vitro, Vaccine, vol.25, issue.4, pp.729-740, 2007.
DOI : 10.1016/j.vaccine.2006.08.011

S. Jeffers, D. Sanders, and A. Sanchez, Covalent Modifications of the Ebola Virus Glycoprotein, Journal of Virology, vol.76, issue.24, pp.12463-12472, 2002.
DOI : 10.1128/JVI.76.24.12463-12472.2002

L. Ellgaard and A. Helenius, Quality control in the endoplasmic reticulum, Nature Reviews Molecular Cell Biology, vol.418, issue.3, pp.181-191, 2003.
DOI : 10.1038/nrm1052

C. Chaipan, D. Kobasa, S. Bertram, I. Glowacka, and I. Steffen, Proteolytic Activation of the 1918 Influenza Virus Hemagglutinin, Journal of Virology, vol.83, issue.7, pp.3200-3211, 2009.
DOI : 10.1128/JVI.02205-08

O. Zhirnov and H. Klenk, Human influenza A viruses are proteolytically activated and do not induce apoptosis in CACO-2 cells, Virology, vol.313, issue.1, pp.198-212, 2003.
DOI : 10.1016/S0042-6822(03)00264-2

E. Mossel, C. Huang, K. Narayanan, S. Makino, and R. Tesh, Exogenous ACE2 Expression Allows Refractory Cell Lines To Support Severe Acute Respiratory Syndrome Coronavirus Replication, Journal of Virology, vol.79, issue.6, pp.3846-3850, 2005.
DOI : 10.1128/JVI.79.6.3846-3850.2005

Z. Yang, Y. Huang, L. Ganesh, K. Leung, and W. Kong, pH-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus Is Mediated by the Spike Glycoprotein and Enhanced by Dendritic Cell Transfer through DC-SIGN, Journal of Virology, vol.78, issue.11, pp.5642-5650, 2004.
DOI : 10.1128/JVI.78.11.5642-5650.2004

W. Li, M. Moore, N. Vasilieva, J. Sui, and S. Wong, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, vol.426, issue.6965, pp.450-454, 2003.
DOI : 10.1038/nature02145

P. Wang, J. Chen, A. Zheng, Y. Nie, and X. Shi, Expression cloning of functional receptor used by SARS coronavirus, Biochemical and Biophysical Research Communications, vol.315, issue.2, pp.439-444, 2004.
DOI : 10.1016/j.bbrc.2004.01.076

Y. Ding, L. He, Q. Zhang, Z. Huang, and X. Che, Organ distribution of severe acute respiratory syndrome(SARS) associated coronavirus(SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways, The Journal of Pathology, vol.203, issue.2, pp.622-630, 2004.
DOI : 10.1002/path.1560

D. Harmer, M. Gilbert, R. Borman, and K. Clark, Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme, FEBS Letters, vol.417, issue.1-2, pp.107-110, 2002.
DOI : 10.1016/S0014-5793(02)03640-2

A. Cozens, M. Yezzi, K. Kunzelmann, T. Ohrui, and L. Chin, CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells., American Journal of Respiratory Cell and Molecular Biology, vol.10, issue.1, pp.38-47, 1994.
DOI : 10.1165/ajrcmb.10.1.7507342

R. Reddel, Y. Ke, B. Gerwin, M. Mcmenamin, and J. Lechner, Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes, Cancer Res, vol.48, pp.1904-1909, 1988.

R. Godfrey, Human airway epithelial tight junctions, Microscopy Research and Technique, vol.120, issue.5, pp.488-499, 1997.
DOI : 10.1002/(SICI)1097-0029(19970901)38:5<488::AID-JEMT5>3.0.CO;2-E

J. Zhu, A. Rogers, A. Burke-gaffney, P. Hellewell, and P. Jeffery, Cytokine-induced airway epithelial ICAM-1 upregulation: quantification by high-resolution scanning and transmission electron microscopy, European Respiratory Journal, vol.13, issue.6, pp.1318-1328, 1999.
DOI : 10.1183/09031936.99.13613299

S. Chan, C. Empig, F. Welte, R. Speck, and A. Schmaljohn, Folate Receptor-?? Is a Cofactor for Cellular Entry by Marburg and Ebola Viruses, Cell, vol.106, issue.1, pp.117-126, 2001.
DOI : 10.1016/S0092-8674(01)00418-4

H. Deng, R. Liu, W. Ellmeier, S. Choe, and D. Unutmaz, Identification of a major co-receptor for primary isolates of HIV-1, Nature, vol.381, issue.6584, pp.661-666, 1996.
DOI : 10.1038/381661a0

R. Wool-lewis and P. Bates, Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines, J Virol, vol.72, pp.3155-3160, 1998.

B. Bosch, W. Bartelink, and P. Rottier, Cathepsin L Functionally Cleaves the Severe Acute Respiratory Syndrome Coronavirus Class I Fusion Protein Upstream of Rather than Adjacent to the Fusion Peptide, Journal of Virology, vol.82, issue.17, pp.8887-8890, 2008.
DOI : 10.1128/JVI.00415-08

R. Watanabe, S. Matsuyama, K. Shirato, M. Maejima, and S. Fukushi, Entry from the Cell Surface of Severe Acute Respiratory Syndrome Coronavirus with Cleaved S Protein as Revealed by Pseudotype Virus Bearing Cleaved S Protein, Journal of Virology, vol.82, issue.23, pp.11985-11991, 2008.
DOI : 10.1128/JVI.01412-08

K. Holmes, B. Zelus, J. Schickli, and S. Weiss, Receptor Specificity and Receptor-Induced Conformational Changes in Mouse Hepatitis Virus Spike Glycoprotein, Adv Exp Med Biol, vol.494, pp.173-181, 2001.
DOI : 10.1007/978-1-4615-1325-4_29

B. Zelus, J. Schickli, D. Blau, S. Weiss, and K. Holmes, Conformational Changes in the Spike Glycoprotein of Murine Coronavirus Are Induced at 37??C either by Soluble Murine CEACAM1 Receptors or by pH 8, Journal of Virology, vol.77, issue.2, pp.830-840, 2003.
DOI : 10.1128/JVI.77.2.830-840.2003

D. Eckert and P. Kim, Mechanisms of Viral Membrane Fusion and Its Inhibition, Annual Review of Biochemistry, vol.70, issue.1, pp.777-810, 2001.
DOI : 10.1146/annurev.biochem.70.1.777

W. Weissenhorn, A. Dessen, L. Calder, S. Harrison, and J. Skehel, Structural basis for membrane fusion by enveloped viruses, Molecular Membrane Biology, vol.223, issue.1, pp.3-9, 1999.
DOI : 10.1126/science.279.5353.1034

H. Kido, Y. Okumura, H. Yamada, D. Mizuno, and Y. Higashi, Secretory leukoprotease inhibitor and pulmonary surfactant serve as principal defenses against influenza A virus infection in the airway and chemical agents upregulating their levels may have therapeutic potential, Biol Chem, vol.385, pp.1029-1034, 2004.

B. Nal, C. Chan, F. Kien, L. Siu, and J. Tse, Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E, Journal of General Virology, vol.86, issue.5, pp.1423-1434, 2005.
DOI : 10.1099/vir.0.80671-0

U. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, vol.244, issue.5259, pp.680-685, 1970.
DOI : 10.1038/227680a0

P. Lozach, A. A. Bartosch, B. Virelizier, J. Arenzana-seisdedos, and F. , C-type Lectins L-SIGN and DC-SIGN Capture and Transmit Infectious Hepatitis C Virus Pseudotype Particles, Journal of Biological Chemistry, vol.279, issue.31, pp.32035-32045, 2004.
DOI : 10.1074/jbc.M402296200

S. Pohlmann, J. Zhang, F. Baribaud, Z. Chen, and G. Leslie, Hepatitis C Virus Glycoproteins Interact with DC-SIGN and DC-SIGNR, Journal of Virology, vol.77, issue.7, pp.4070-4080, 2003.
DOI : 10.1128/JVI.77.7.4070-4080.2003

R. Connor, B. Chen, S. Choe, and N. Landau, Vpr Is Required for Efficient Replication of Human Immunodeficiency Virus Type-1 in Mononuclear Phagocytes, Virology, vol.206, issue.2, pp.935-944, 1995.
DOI : 10.1006/viro.1995.1016