Infectious diseases of the nervous system and their impact in developing countries.
Roberto Bruzzone, Monique Dubois-Dalcq, Georges E Grau, Diane E Griffin, Krister Kristensson

To cite this version:
Infectious Diseases of the Nervous System and Their Impact in Developing Countries

Roberto Bruzzone1*, Monique Dubois-Dalcq2, Georges E. Grau3, Diane E. Griffin4, Krister Kristensson5

1 Hong Kong University-Pasteur Research Centre, Hong Kong, Hong Kong Special Administrative Region, China, 2 National institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States of America, 3 Department of Pathology, University of Sydney & Bosch Institute, Sydney, Australia, 4 Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America, 5 Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden

Infectious diseases of the nervous system in the developing world have been relatively neglected. This is paradoxical because neurotropic pathogens are common and contribute significantly to human suffering and disease burden in these regions. Clearly, living with a neurological handicap and/or cognitive dysfunction may have a strong negative impact on socioeconomic development. Here, we briefly describe a few examples of such infections causing severe diseases that result in the loss of motor-sensory function (cerebral malaria, viral encephalitis, alterations of cognition/behavior (AIDS), or sleep perturbations (African trypanosomiasis). Importantly, there is an opportunity to interfere with infection because the central nervous system (CNS) is not usually the primary site for pathogen infection.

Cerebral Malaria

Cerebral malaria (CM) is one of the most severe complications of Plasmodium falciparum malaria. It is most common in young children living in malaria-endemic sub-Saharan Africa where CM incidence is 1–12 cases/1,000 children per year and the mortality rate can be as high as 22%, as described recently in a large cohort of Kenyan children (<14 years old) [1]. Malaria was found to be associated with neurological involvement on admission in nearly half of the patients (with an incidence of 47.6%), and their mortality was increased when compared to malaria patients without neurological signs. The main clinical features consist of seizures often preceding deep coma resulting from cerebral edema, microhemorrhages, and ischemia. Erythrocytes containing malaria parasites accumulate in brain microvessels where leukocytes and platelets are also found.

The multi-factorial complexity of this syndrome has been related to the parasite’s release of glycosylphosphatidylinositol, which binds to pattern recognition receptors, triggering an inflammatory response and cytokine/chemokine release. TNFα upregulates the endothelial intercellular adhesion molecule ICAM, enhancing binding of parasitized erythrocytes to vascular endothelia with eventual disruption of the blood–brain barrier (BBB) [2]. This may result in activation of microglial cells and astrocytes, demyelination, and/or neuronal injury [3]. Important insights have come from clinical studies, post-mortem analyses of brains from CM victims, in vitro studies of the adhesion of parasitized erythrocytes to brain endothelial cells, and genetic studies of susceptibility and resistance determinants in mice and humans [3]. Balanced views on other aspects of CM pathogenesis and pathophysiology, including metabolic acidosis and capillary dysfunction, have been discussed by Idro et al. [1], who proposed renaming CM as “malaria with neurological involvement”, which leads to long-term neurological sequel and/or behavioral problems in 24% of cases, imposing a major burden on African children.

Although CM is associated with a dramatic activation of brain endothelial cells, with increased expression of ICAM (see [2,3] for review), remarkably it does not exhibit perivascular infiltrates, and no transendothelial migration of leukocytes occurs. Thus, in CM, inflammation and immune-mediated events remain essentially intravascular, in contrast to other neuroimmunological disorders, such as multiple sclerosis, which is characterized by perivascular infiltrates and no intravascular sequestration of leukocytes. Furthermore, the Plasmodium-infected erythrocytes also remain intravascular, in contrast to the direct CNS invasion by other pathogens, such as in toxoplasmosis. Consequently, unless marked hemorrhages occur, there is a limited involvement of parasites or of leukocytes within the CNS parenchyma itself. It is not possible, however, to draw conclusions about a lack of inflammatory pathogenesis, because most, if not all, brain pathology is mediated by intravascular inflammatory events. Concerted interdisciplinary actions are needed to reach a better understanding of CM pathogenesis and the intricate roles of parasite-derived toxins, proinflammatory cytokines, and adhesion molecules. The discovery of increased numbers of endothelial cell membrane-derived micro-particles in the circulation during acute CM raises the question of their pathogenic role, as suggested by disease protection in mice lacking one of the genes controlling microparticle formation [4].

Deciphering the precise host immune responses associated with micro-environmental alterations leading to CM is crucial for devising novel therapeutic strategies. Treatment compounds need to be simple,


Editor: Glenn F. Rall, The Fox Chase Cancer Center, United States of America

Published February 27, 2009

Copyright: © 2009 Bruzzone et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Roberto Bruzzone is supported by the French Ministry of Health through the RESPARI program of the Institut Pasteur International Network. Monique Dubois-Dalcq is supported by NINDS for her work at NIH. Georges Grau is supported by the ARC, the NHMRC, the Rebecca Cooper Foundation (Australia), and the Wellcome Trust (UK) for his work at The University of Sydney. Diane Griffin is supported by the NINDS and the Dana Foundation for her work at the Johns Hopkins Bloomberg School of Public Health. Krister Kristensson is supported by the European Community NEUROTRYP (032324) for his work on HAT.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bruzzone@hku.hk

Supporting Information

Figure S1 Selection of reference pathological images. Tissue samples were from the University of Sydney and the University of Helsinki; reprints were obtained with permission of the respective laboratories.

Figure S2 MLLE curve for the CM dataset.

Figure S3 AIC for the CM dataset.

Figure S4 ROC curves for the CM dataset.

Figure S5 Comparison of AUC for the CM dataset.

Figure S6 Comparison of accuracy for the CM dataset.

Figure S7 Comparison of precision for the CM dataset.

Figure S8 Comparison of recall for the CM dataset.

Figure S9 Comparison of f1-score for the CM dataset.

Figure S10 Comparison of specificity for the CM dataset.

Figure S11 Comparison of sensitivity for the CM dataset.

Figure S12 Comparison of TPR for the CM dataset.

Figure S13 Comparison of FPR for the CM dataset.

Figure S14 Comparison of Brier score for the CM dataset.

Figure S15 Comparison of precision-recall curve for the CM dataset.

Figure S16 Comparison of PR AUC for the CM dataset.

Figure S17 Comparison of PR AUC for the CM dataset.

Figure S18 Comparison of PR AUC for the CM dataset.

Figure S19 Comparison of PR AUC for the CM dataset.

Figure S20 Comparison of PR AUC for the CM dataset.

Figure S21 Comparison of PR AUC for the CM dataset.

Figure S22 Comparison of PR AUC for the CM dataset.

Figure S23 Comparison of PR AUC for the CM dataset.

Figure S24 Comparison of PR AUC for the CM dataset.

Figure S25 Comparison of PR AUC for the CM dataset.

Figure S26 Comparison of PR AUC for the CM dataset.

Figure S27 Comparison of PR AUC for the CM dataset.

Figure S28 Comparison of PR AUC for the CM dataset.

Figure S29 Comparison of PR AUC for the CM dataset.

Figure S30 Comparison of PR AUC for the CM dataset.
Trypanosomiasis across the BBB and the molecules involved in trafficking of issues can be addressed by characterizing designed to cure brain infections. These approaches, aiming at a down-modulation of excessive host responses, are desirable. There is, therefore, an urgent need for compound melarsoprol, are available. Effects, such as the widely used arsenic only drugs that can have severe toxic side for treatment. Although drugs are relatively effective in curing both forms of disease, they have been major advances in its control in most Latin American countries where this infection was endemic in the past 20 years. This has been achieved by large-scale programs to halt transmission by eliminating populations of insect vectors (the blood-feeding “assassin bugs”, sub-family Triatominae), screening of blood donors and Chagasic mothers. According to the World Health Report 2004, the disability adjusted life years for Chagas disease were 667,000 and the number of yearly deaths was 14,000 (compared with estimates for HAT of 1,525,000 and 48,000, respectively). Non-treated, the disease evolves in a slow and progressive way into autonomic system neuropathies causing fatal cardiomyopathy and megacolon syndromes in about 30% of the patients. Involvement of the CNS is infrequent, discrete, and non-specific, but in AIDS patients, meningo-encephalitis with parasites in glial cells has been documented. A parasite-derived neurotropic factor that binds to the high-affinity receptor for nerve growth factor TrkA (tropomyosin-related kinase A) may be involved in the pathogenesis of nervous system infection. Reaching an international consensus on diagnostic and treatment procedures is a current priority. HIV can spread to the CNS during early and late disease stages, leading to HIV-associated dementia (HAD) or HIV-associated neurocognitive disorders (HAND). In the Western world, where HIV clade B dominates, the advent of highly active anti-retroviral therapy has reduced the incidence of HAD and HAND by approximately half (<15%). The neurobiological basis of these conditions is not due to direct HIV infection of neurons, but to synaptodendritic alterations called “beading”. Cortical motoneurons and interneurons that show these alterations may eventually die of apoptosis. In sub-Saharan Africa, where AIDS is prevalent, HAD incidence was studied recently using an accurate, cross-cultural HAD scale. In Uganda, where clades D and A dominate, 31% of AIDS patients develop HAD, which can affect verbal memory, fine and gross motor performances, psychomotor speed, and executive functions. Affected individuals have a higher rate of unemployment than controls and show poor performance in daily family life. In contrast, in Ethiopia where HIV clade C dominates, only minor cognitive alterations were reported in AIDS patients. The lesser impact of HIV on cognitive functions in this case could be explained by the poor ability of HIV clade C isolates to grow in macrophages, a characteristic of neurotropic strains. Some envelope glycoprotein variants (named N283) are more frequently isolated from infected brains than from other organs. These variants were likely selected by their ability to bind to low levels of the HIV receptor CD4 and co-receptor CCR5 on perivascular macrophages and microglia residing in the CNS. Viral replication in these target cells results in the formation of multinucleated cells. Such giant cells also produce virus that will further spread and persist in the brain where HIV protease inhibitors have limited accessibility. Clearing such a viral reservoir would require specific inhibitors for neurotropic variants that can cross the BBB. More epidemiological studies of HAD and HAND should determine the impact of HIV infection on brain function in different regions of sub-Saharan Africa. To decrease the negative impact of these syndromes on patient cognitive behavior and improve societal acceptance of individuals with HAD or HAND, one needs to isolate and characterize neurotropic viral subtypes from the cerebrospinal fluid early in AIDS. This might allow designing ways to block HIV entry into the CNS. Viral encephalitis is emerging or re-emerging as an important cause of human disease due to increased geographic range
serious neurological diseases [20]. According to the World Health Organization, Japanese encephalitis is the leading cause of viral encephalitis in Asia, with an annual incidence of 30,000–50,000 clinical cases. Changes in vector populations and in human association with reservoir hosts, and the appearance of new viral variants that are more virulent for humans or more efficiently transmitted, are associated with emerging viruses, half of which cause serious neurological diseases [20].

Arthropod-borne viruses have been restricted in range geographically by the availability of their invertebrate and vertebrate hosts. However, modern transportation has introduced vectors that efficiently transmit arboviruses into new areas (e.g., the Asian tiger mosquito Aedes albopictus into North America and Europe). In many areas, pre-existing populations of competent vectors set the stage for successful establishment of viruses in new regions. Recent examples are the introduction of West Nile virus into North America, where susceptible vectors and hosts were abundant and rapid spread across the continent has resulted in more than 11,000 cases of CNS disease, and the arrival of a strain of Chikungunya virus adapted to Aedes albopictus in southern Europe. West Nile virus has the widest distribution of all flaviviruses, its range spanning Africa, North, Central, and South America, West Asia, Europe, the Middle East, and Australia [18]. Japanese encephalitis and Rift Valley fever viruses could easily follow the same pattern.

Bats are increasingly recognized as important hosts for a number of zoonoses that cause CNS infection (e.g., lyssa viruses, henipaviruses, coronaviruses, and filoviruses). Disruption of the environment with changing agricultural practices has increased the likelihood that these viruses will be transmitted to humans, as suggested by Nipah and Hendra virus outbreaks. New outbreaks of Nipah encephalitis, nine of which have occurred in Bangladesh since 2001, resulting in the death of 40%–75% of infected people, indicate human-to-human as well as bat-to-human transmission [21].

There are currently no treatments available for these viral CNS diseases. Development of antiviral agents may be useful, but treatment at the time of symptoms may not be effective. Vaccines are likely to be the most effective interventions and are available or in development for many of these viruses (viz., Japanese encephalitis, tick-borne encephalitis, and West Nile); however, to be effectively utilized, spread of the virus must be monitored and disease outbreaks anticipated.

Perspectives

There is an urgent need for continued surveillance and identification of viruses in vertebrate and invertebrate hosts to anticipate the introduction and spread of new and old agents. A better understanding of the mechanisms of entry into the CNS, of neuronal damage, the immune response to viral infection, and prevention of CNS infection will guide the development of appropriate interventions.

The questions raised here are part of a broader field of investigations on a dozen neurotropic pathogens that were discussed at a September 2008 conference in Paris, “Infections of the Nervous System: Pathogenesis and World Impact.” This conference has addressed the current gaps in knowledge and set the stage to establish an agenda for confronting this group of diseases in the coming years. Abstracts have been published in BMC Proceedings [122]: http://www.biomedcentral.com/1753-6561/2/issue=S1. We need to increase the awareness of the world’s leading institutions on the impact and challenges in this field and to foster new research and training programs that will trigger new ideas to study the mechanisms of pathogen spreading and neural cell dysfunction in close contact with clinical research and surveillance, diagnosis, and treatment of infectious neurological diseases. Progress will depend on the development of a systemic approach based on cross-fertilization between clinicians studying disease mechanisms and scientists working on the life cycle and molecular makeup of neurotropic infectious agents and their vectors; between immunologists studying innate and adaptive immune responses to neurotropic pathogens and cell biologists investigating pathogen interactions with the BBB and neural cells; and between leaders in new technologies for diagnosis and therapies and medical anthropologists.

References