P. Beales, P. Parfrey, and N. Katsanis, The Bardet-Biedl and Alstrom Syndromes (eds) Genetics of renal disease, pp.361-398, 2004.

F. Hildebrandt and E. Otto, Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease?, Nature Reviews Genetics, vol.157, issue.12, pp.928-940, 2005.
DOI : 10.1038/nrg1727

T. Watnick and G. Germino, From cilia to cyst, Nature Genetics, vol.34, issue.4, pp.355-356, 2003.
DOI : 10.1038/ng0803-355

J. Badano, N. Mitsuma, P. Beales, and N. Katsanis, The Ciliopathies: An Emerging Class of Human Genetic Disorders, Annual Review of Genomics and Human Genetics, vol.7, issue.1, pp.125-148, 2006.
DOI : 10.1146/annurev.genom.7.080505.115610

M. Fliegauf, T. Benzing, and H. Omran, When cilia go bad: cilia defects and ciliopathies, Nature Reviews Molecular Cell Biology, vol.125, issue.11, pp.880-893, 2007.
DOI : 10.1038/nrm2278

J. Gerdes, E. Davis, and N. Katsanis, The Vertebrate Primary Cilium in Development, Homeostasis, and Disease, Cell, vol.137, issue.1, pp.32-45, 2009.
DOI : 10.1016/j.cell.2009.03.023

L. Pedersen and J. Rosenbaum, Chapter Two Intraflagellar Transport (IFT), Curr Top Dev Biol, vol.85, pp.23-61, 2008.
DOI : 10.1016/S0070-2153(08)00802-8

J. Rosenbaum and G. Witman, Intraflagellar transport, Nature Reviews Molecular Cell Biology, vol.418, issue.11, pp.813-825, 2002.
DOI : 10.1038/nrm952

URL : http://dx.doi.org/10.1016/s0960-9822(02)00703-0

M. Cardenas-rodriguez and J. Badano, Ciliary biology: Understanding the cellular and genetic basis of human ciliopathies, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.52, issue.4, pp.263-280, 2009.
DOI : 10.1002/ajmg.c.30227

URL : https://hal.archives-ouvertes.fr/pasteur-00604821

S. Christensen, S. Pedersen, P. Satir, I. Veland, and L. Schneider, Chapter 10 The Primary Cilium Coordinates Signaling Pathways in Cell Cycle Control and Migration During Development and Tissue Repair, Curr Top Dev Biol, vol.85, pp.261-301, 2008.
DOI : 10.1016/S0070-2153(08)00810-7

J. Gerdes and N. Katsanis, Chapter 7 Ciliary Function and Wnt Signal Modulation, Curr Top Dev Biol, vol.85, pp.175-195, 2008.
DOI : 10.1016/S0070-2153(08)00807-7

C. Haycraft and R. Serra, Chapter 11 Cilia Involvement in Patterning and Maintenance of the Skeleton, Curr Top Dev Biol, vol.85, pp.303-332, 2008.
DOI : 10.1016/S0070-2153(08)00811-9

S. Nauli, F. Alenghat, Y. Luo, E. Williams, P. Vassilev et al., Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells, Nature Genetics, vol.33, issue.2, pp.129-137, 2003.
DOI : 10.1038/ng1076

N. Berbari, J. Lewis, G. Bishop, C. Askwith, and K. Mykytyn, Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia, Proceedings of the National Academy of Sciences, vol.105, issue.11, pp.4242-4246, 2008.
DOI : 10.1073/pnas.0711027105

P. Wilson, Polycystic Kidney Disease, New England Journal of Medicine, vol.350, issue.2, pp.151-164, 2004.
DOI : 10.1056/NEJMra022161

URL : https://hal.archives-ouvertes.fr/hal-00562802

T. Consortium, The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16, Cell, vol.77, pp.881-894, 1994.

T. Mochizuki, G. Wu, T. Hayashi, S. Xenophontos, B. Veldhuisen et al., PKD2, a Gene for Polycystic Kidney Disease That Encodes an Integral Membrane Protein, Science, vol.272, issue.5266, pp.1339-1342, 1996.
DOI : 10.1126/science.272.5266.1339

V. Torres and P. Harris, Autosomal dominant polycystic kidney disease: the last 3 years, Kidney International, vol.76, issue.2, pp.149-168, 2009.
DOI : 10.1038/ki.2009.128

L. Onuchic, L. Furu, Y. Nagasawa, X. Hou, T. Eggermann et al., PKHD1, the Polycystic Kidney and Hepatic Disease 1 Gene, Encodes a Novel Large Protein Containing Multiple Immunoglobulin-Like Plexin-Transcription???Factor Domains and Parallel Beta-Helix 1 Repeats, The American Journal of Human Genetics, vol.70, issue.5, pp.1305-1317, 2002.
DOI : 10.1086/340448

C. Ward, M. Hogan, S. Rossetti, D. Walker, T. Sneddon et al., The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein, Nature Genetics, vol.30, issue.3, pp.259-269, 2002.
DOI : 10.1038/ng833

M. Barr and P. Sternberg, A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans, Nature, vol.78, issue.6751, pp.386-389, 1999.
DOI : 10.1038/43913

J. Moyer, M. Lee-tischler, H. Kwon, J. Schrick, E. Avner et al., Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice, Science, vol.264, issue.5163, pp.1329-1333, 1994.
DOI : 10.1126/science.8191288

G. Pazour, B. Dickert, Y. Vucica, E. Seeley, J. Rosenbaum et al., 737, Are Required for Assembly of Cilia and Flagella, The Journal of Cell Biology, vol.150, issue.3, pp.709-718, 2000.
DOI : 10.1083/jcb.129.1.169

P. Taulman, C. Haycraft, D. Balkovetz, and B. Yoder, Polaris, a Protein Involved in Left-Right Axis Patterning, Localizes to Basal Bodies and Cilia, Molecular Biology of the Cell, vol.12, issue.3, pp.589-599, 2001.
DOI : 10.1091/mbc.12.3.589

N. Murcia, W. Richards, B. Yoder, M. Mucenski, J. Dunlap et al., The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination, Development, vol.127, pp.2347-2355, 2000.

C. Ward, D. Yuan, T. Masyuk, X. Wang, R. Punyashthiti et al., Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia, Human Molecular Genetics, vol.12, issue.20, pp.2703-2710, 2003.
DOI : 10.1093/hmg/ddg274

I. Kim, Y. Fu, K. Hui, G. Moeckel, W. Mai et al., Fibrocystin/Polyductin Modulates Renal Tubular Formation by Regulating Polycystin-2 Expression and Function, Journal of the American Society of Nephrology, vol.19, issue.3, pp.455-468, 2008.
DOI : 10.1681/ASN.2007070770

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2391052

S. Wang, J. Zhang, S. Nauli, X. Li, P. Starremans et al., Fibrocystin/Polyductin, Found in the Same Protein Complex with Polycystin-2, Regulates Calcium Responses in Kidney Epithelia, Molecular and Cellular Biology, vol.27, issue.8, pp.3241-3252, 2007.
DOI : 10.1128/MCB.00072-07

J. Woollard, R. Punyashtiti, S. Richardson, T. Masyuk, S. Whelan et al., A mouse model of autosomal recessive polycystic kidney disease with biliary duct and proximal tubule dilatation, Kidney International, vol.72, issue.3, pp.328-336, 2007.
DOI : 10.1038/sj.ki.5002294

J. Zhou, Polycystins and Primary Cilia: Primers for Cell Cycle Progression, Annual Review of Physiology, vol.71, issue.1, pp.83-113, 2009.
DOI : 10.1146/annurev.physiol.70.113006.100621

S. Gonzalez-perrett, K. Kim, C. Ibarra, A. Damiano, E. Zotta et al., Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel, Proceedings of the National Academy of Sciences, vol.98, issue.3, pp.1182-1187, 2001.
DOI : 10.1073/pnas.98.3.1182

K. Hanaoka, F. Qian, A. Boletta, A. Bhunia, K. Piontek et al., Coassembly of polycystin-1 and -2 produces unique cationpermeable currents, Nature, vol.408, pp.990-994, 2000.

G. Pazour, S. Agustin, J. Follit, J. Rosenbaum, J. Witman et al., Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease, Current Biology, vol.12, issue.11, pp.378-380, 2002.
DOI : 10.1016/S0960-9822(02)00877-1

F. Qian, F. Germino, Y. Cai, X. Zhang, S. Somlo et al., PKD1 interacts with PKD2 through a probable coiled-coil domain, Nature Genetics, vol.58, issue.2, pp.179-183, 1997.
DOI : 10.1016/0168-9525(96)99997-7

L. Tsiokas, E. Kim, T. Arnould, V. Sukhatme, and G. Walz, Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2, Proceedings of the National Academy of Sciences, vol.94, issue.13, pp.6965-6970, 1997.
DOI : 10.1073/pnas.94.13.6965

B. Yoder, X. Hou, and L. Guay-woodford, The Polycystic Kidney Disease Proteins, Polycystin-1, Polycystin-2, Polaris, and Cystin, Are Co-Localized in Renal Cilia, Journal of the American Society of Nephrology, vol.13, issue.10, pp.2508-2516, 2002.
DOI : 10.1097/01.ASN.0000029587.47950.25

O. Toole, J. Liu, Y. Davis, E. Westlake, C. Attanasio et al., Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy, J Clin Invest, vol.120, pp.791-802, 2010.

F. Hildebrandt, M. Attanasio, and E. Otto, Nephronophthisis: Disease Mechanisms of a Ciliopathy, Journal of the American Society of Nephrology, vol.20, issue.1, pp.23-35, 2009.
DOI : 10.1681/ASN.2008050456

E. Otto, K. Tory, M. Attanasio, W. Zhou, M. Chaki et al., Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11), Journal of Medical Genetics, vol.46, issue.10, pp.663-670, 2009.
DOI : 10.1136/jmg.2009.066613

E. Otto, B. Schermer, T. Obara, O. Toole, J. Hiller et al., Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination, Nature Genetics, vol.34, issue.4, pp.413-420, 2003.
DOI : 10.1038/ng1217

M. Attanasio, N. Uhlenhaut, V. Sousa, O. Toole, J. Otto et al., Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis, Nature Genetics, vol.426, issue.8, pp.1018-1024, 2007.
DOI : 10.1038/ng2072

S. Edvardson, A. Shaag, S. Zenvirt, Y. Erlich, G. Hannon et al., Joubert Syndrome 2 (JBTS2) in Ashkenazi Jews Is Associated with a TMEM216 Mutation, The American Journal of Human Genetics, vol.86, issue.1, pp.93-97, 2010.
DOI : 10.1016/j.ajhg.2009.12.007

M. Parisi, Clinical and molecular features of Joubert syndrome and related disorders, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.119, issue.4, pp.326-340, 2009.
DOI : 10.1002/ajmg.c.30229

E. Valente, C. Logan, S. Mougou-zerelli, J. Lee, J. Silhavy et al., Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes, Nature Genetics, vol.90, issue.7, pp.619-625, 2010.
DOI : 10.1038/ng.594

N. Zaghloul and N. Katsanis, Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy, Journal of Clinical Investigation, vol.119, issue.3, pp.428-437, 2009.
DOI : 10.1172/JCI37041DS1

S. Kim, A. Shindo, T. Park, E. Oh, S. Ghosh et al., Planar Cell Polarity Acts Through Septins to Control Collective Cell Movement and Ciliogenesis, Science, vol.329, issue.5997, pp.1337-1340, 2010.
DOI : 10.1126/science.1191184

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509789

C. Leitch, N. Zaghloul, E. Davis, C. Stoetzel, A. Diaz-font et al., Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome, Nature Genetics, vol.25, issue.4, pp.443-448, 2008.
DOI : 10.1038/ng.97

URL : https://hal.archives-ouvertes.fr/pasteur-00604849

E. Otto, T. Hurd, R. Airik, M. Chaki, W. Zhou et al., Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy, Nature Genetics, vol.58, issue.10, pp.840-850, 2010.
DOI : 10.1271/bbb.69.261

C. Stoetzel, J. Muller, V. Laurier, E. Davis, N. Zaghloul et al., Identification of a Novel BBS Gene (BBS12) Highlights the Major Role of a Vertebrate-Specific Branch of Chaperonin-Related Proteins in Bardet-Biedl Syndrome, The American Journal of Human Genetics, vol.80, issue.1, pp.1-11, 2007.
DOI : 10.1086/510256

URL : https://hal.archives-ouvertes.fr/hal-00166251

S. Ansley, J. Badano, O. Blacque, J. Hill, B. Hoskins et al., Basal body dysfunction is a likely cause of pleiotropic Bardet???Biedl syndrome, Nature, vol.425, issue.6958, pp.628-633, 2003.
DOI : 10.1038/nature02030

J. Badano, C. Leitch, S. Ansley, H. May-simera, S. Lawson et al., Dissection of epistasis in oligogenic Bardet???Biedl syndrome, Nature, vol.97, issue.7074, pp.326-330, 2006.
DOI : 10.1038/nature04370

Y. Fan, M. Esmail, S. Ansley, O. Blacque, K. Boroevich et al., Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome, Nature Genetics, vol.31, issue.9, pp.989-993, 2004.
DOI : 10.1093/bioinformatics/14.9.755

J. Kim, J. Badano, S. Sibold, M. Esmail, J. Hill et al., The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression, Nature Genetics, vol.36, issue.5, pp.462-470, 2004.
DOI : 10.1038/ng1352

J. Li, J. Gerdes, C. Haycraft, Y. Fan, T. Teslovich et al., Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene, Cell, vol.117, issue.4, pp.541-552, 2004.
DOI : 10.1016/S0092-8674(04)00450-7

A. Loktev, Q. Zhang, J. Beck, C. Searby, T. Scheetz et al., A BBSome Subunit Links Ciliogenesis, Microtubule Stability, and Acetylation, Developmental Cell, vol.15, issue.6, pp.854-865, 2008.
DOI : 10.1016/j.devcel.2008.11.001

M. Nachury, A. Loktev, Q. Zhang, C. Westlake, J. Peränen et al., A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis, Cell, vol.129, issue.6, pp.1201-1213, 2007.
DOI : 10.1016/j.cell.2007.03.053

URL : https://hal.archives-ouvertes.fr/hal-00183618

B. Alexiev, X. Lin, C. Sun, and D. Brenner, Meckel-Gruber syndrome: pathologic manifestations, minimal diagnostic criteria , and differential diagnosis, Arch Pathol Lab Med, vol.130, pp.1236-1238, 2006.

L. Baala, S. Audollent, J. Martinovic, C. Ozilou, M. Babron et al., Pleiotropic Effects of CEP290 (NPHP6) Mutations Extend to Meckel Syndrome, The American Journal of Human Genetics, vol.81, issue.1, pp.170-179, 2007.
DOI : 10.1086/519494

M. Delous, L. Baala, R. Salomon, C. Laclef, J. Vierkotten et al., The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome, Nature Genetics, vol.114, issue.7, pp.875-881, 2007.
DOI : 10.1073/pnas.0505328102

M. Kyttälä, J. Tallila, R. Salonen, O. Kopra, N. Kohlschmidt et al., MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome, Nature Genetics, vol.18, issue.2, pp.155-157, 2006.
DOI : 10.1038/ng1714

U. Smith, M. Consugar, L. Tee, B. Mckee, E. Maina et al., The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat, Nature Genetics, vol.294, issue.2, pp.191-196, 2006.
DOI : 10.1038/ng1713

J. Tallila, E. Jakkula, L. Peltonen, R. Salonen, and M. Kestilä, Identification of CC2D2A as a Meckel Syndrome Gene Adds an Important Piece to the Ciliopathy Puzzle, The American Journal of Human Genetics, vol.82, issue.6, pp.1361-1367, 2008.
DOI : 10.1016/j.ajhg.2008.05.004

C. Bergmann, M. Fliegauf, N. Brüchle, V. Frank, H. Olbrich et al., Loss of Nephrocystin-3 Function Can Cause Embryonic Lethality,??Meckel-Gruber-like Syndrome, Situs Inversus, and Renal-Hepatic-Pancreatic Dysplasia, The American Journal of Human Genetics, vol.82, issue.4, pp.959-970, 2008.
DOI : 10.1016/j.ajhg.2008.02.017

H. Dawe, U. Smith, A. Cullinane, D. Gerrelli, P. Cox et al., The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation, Human Molecular Genetics, vol.16, issue.2, pp.173-186, 2007.
DOI : 10.1093/hmg/ddl459

J. Sayer, E. Otto, O. Toole, J. Nurnberg, G. Kennedy et al., The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4, Nature Genetics, vol.316, issue.6, pp.674-681, 2006.
DOI : 10.1083/jcb.101.6.2085

S. Weatherbee, L. Niswander, and K. Anderson, A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling, Human Molecular Genetics, vol.18, issue.23, pp.4565-4575, 2009.
DOI : 10.1093/hmg/ddp422

J. Badano, J. Kim, B. Hoskins, R. Lewis, S. Ansley et al., Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet-Biedl patients with two mutations at a second BBS locus, Human Molecular Genetics, vol.12, issue.14, pp.1651-1659, 2003.
DOI : 10.1093/hmg/ddg188

P. Beales, J. Badano, A. Ross, S. Ansley, B. Hoskins et al., Genetic Interaction of BBS1 Mutations with Alleles at Other BBS Loci Can Result in Non-Mendelian Bardet-Biedl Syndrome, The American Journal of Human Genetics, vol.72, issue.5, pp.1187-1199, 2003.
DOI : 10.1086/375178

URL : https://hal.archives-ouvertes.fr/hal-00174595

N. Katsanis, S. Ansley, J. Badano, E. Eichers, R. Lewis et al., Triallelic Inheritance in Bardet-Biedl Syndrome, a Mendelian Recessive Disorder, Science, vol.293, issue.5538, pp.2256-2259, 2001.
DOI : 10.1126/science.1063525

J. Hoefele, M. Wolf, O. Toole, J. Otto, E. Schultheiss et al., Evidence of Oligogenic Inheritance in Nephronophthisis, Journal of the American Society of Nephrology, vol.18, issue.10, pp.2789-2795, 2007.
DOI : 10.1681/ASN.2007020243

H. Karmous-benailly, J. Martinovic, M. Gubler, Y. Sirot, L. Clech et al., Antenatal Presentation of Bardet-Biedl Syndrome May Mimic Meckel Syndrome, The American Journal of Human Genetics, vol.76, issue.3, pp.493-504, 2005.
DOI : 10.1086/428679

V. Frank, A. Hollander, N. Brüchle, M. Zonneveld, G. Nürnberg et al., gene encoding a centrosomal protein cause Meckel-Gruber syndrome, Human Mutation, vol.33, issue.1, pp.45-52, 2008.
DOI : 10.1002/humu.20614

E. Valente, J. Silhavy, F. Brancati, G. Barrano, S. Krishnaswami et al., Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome, Nature Genetics, vol.6, issue.6, pp.623-625, 2006.
DOI : 10.1093/hmg/ddi264

N. Sharma, N. Berbari, and B. Yoder, Chapter 13 Ciliary Dysfunction in Developmental Abnormalities and Diseases, Curr Top Dev Biol, vol.85, pp.371-427, 2008.
DOI : 10.1016/S0070-2153(08)00813-2

C. Louie, G. Caridi, V. Lopes, F. Brancati, A. Kispert et al., AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis, Nature Genetics, vol.43, issue.2, pp.175-180, 2010.
DOI : 10.1038/ng.519

H. Khanna, E. Davis, C. Murga-zamalloa, A. Estrada-cuzcano, I. Lopez et al., A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies, Nature Genetics, vol.41, issue.6, pp.739-745, 2009.
DOI : 10.1016/j.visres.2007.08.005

H. Praetorius and K. Spring, Bending the MDCK Cell Primary Cilium Increases Intracellular Calcium, Journal of Membrane Biology, vol.184, issue.1, pp.71-79, 2001.
DOI : 10.1007/s00232-001-0075-4

J. Mcgrath, S. Somlo, S. Makova, X. Tian, and M. Brueckner, Two Populations of Node Monocilia Initiate Left-Right Asymmetry in the Mouse, Cell, vol.114, issue.1, pp.61-73, 2003.
DOI : 10.1016/S0092-8674(03)00511-7

S. Nonaka, Y. Tanaka, Y. Okada, S. Takeda, A. Harada et al., Randomization of Left???Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein, Cell, vol.95, issue.6, pp.829-837, 1998.
DOI : 10.1016/S0092-8674(00)81705-5

M. Simons, J. Gloy, A. Ganner, A. Bullerkotte, M. Bashkurov et al., Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways, Nature Genetics, vol.140, issue.5, pp.537-543, 2005.
DOI : 10.1091/mbc.E02-04-0195

M. Kottgen, B. Buchholz, M. Garcia-gonzalez, F. Kotsis, X. Fu et al., TRPP2 and TRPV4 form a polymodal sensory channel complex, The Journal of Cell Biology, vol.1772, issue.3, pp.437-447, 2008.
DOI : 10.1152/ajprenal.00462.2006

L. Tsiokas, T. Arnould, C. Zhu, E. Kim, G. Walz et al., Specific association of the gene product of PKD2 with the TRPC1 channel, Proceedings of the National Academy of Sciences, vol.96, issue.7, pp.3934-3939, 1999.
DOI : 10.1073/pnas.96.7.3934

P. Zhang, Y. Luo, B. Chasan, S. Gonzalez-perrett, N. Montalbetti et al., The multimeric structure of polycystin-2 (TRPP2): structural-functional correlates of homo- and hetero-multimers with TRPC1, Human Molecular Genetics, vol.18, issue.7, pp.1238-1251, 2009.
DOI : 10.1093/hmg/ddp024

H. Praetorius, J. Frøkiaer, and J. Leipziger, Transepithelial pressure pulses induce nucleotide release in polarized MDCK cells, AJP: Renal Physiology, vol.288, issue.1, pp.133-141, 2005.
DOI : 10.1152/ajprenal.00238.2004

K. Piontek, L. Menezes, M. Garcia-gonzalez, D. Huso, and G. Germino, A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1, Nature Medicine, vol.77, issue.12, pp.1490-1495, 2007.
DOI : 10.1186/gb-2003-4-5-p3

J. Davenport, A. Watts, V. Roper, M. Croyle, T. Van-groen et al., Disruption of Intraflagellar Transport in Adult Mice Leads to Obesity and Slow-Onset Cystic Kidney Disease, Current Biology, vol.17, issue.18, pp.1586-1594, 2007.
DOI : 10.1016/j.cub.2007.08.034

L. Geng, Y. Segal, A. Pavlova, E. Barros, C. Löhning et al., Distribution and developmentally regulated expression of murine polycystin, Pediatr Nephrol Am J Physiol, vol.87, issue.272, pp.451-459, 1997.

R. Bacallao and H. Mcneill, Cystic kidney diseases and planar cell polarity signaling, Clinical Genetics, vol.439, issue.7073, pp.107-117, 2009.
DOI : 10.1111/j.1399-0004.2008.01148.x

C. Logan and R. Nusse, THE WNT SIGNALING PATHWAY IN DEVELOPMENT AND DISEASE, Annual Review of Cell and Developmental Biology, vol.20, issue.1, pp.781-810, 2004.
DOI : 10.1146/annurev.cellbio.20.010403.113126

H. Mcneill, Planar Cell Polarity and the Kidney, Journal of the American Society of Nephrology, vol.20, issue.10, pp.2104-2111, 2009.
DOI : 10.1681/ASN.2008111173

M. Simons and G. Walz, Polycystic kidney disease: Cell division without a c(l)ue?, Kidney International, vol.70, issue.5, pp.854-864, 2006.
DOI : 10.1038/sj.ki.5001534

URL : http://doi.org/10.1038/sj.ki.5001534

T. Grigoryan, P. Wend, A. Klaus, and W. Birchmeier, Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of ??-catenin in mice, Genes & Development, vol.22, issue.17, pp.2308-2341, 2008.
DOI : 10.1101/gad.1686208

M. Veeman, J. Axelrod, and R. Moon, A Second Canon, Developmental Cell, vol.5, issue.3, pp.367-377, 2003.
DOI : 10.1016/S1534-5807(03)00266-1

URL : http://doi.org/10.1016/s1534-5807(03)00266-1

Y. Okada, S. Nonaka, Y. Tanaka, Y. Saijoh, H. Hamada et al., Abnormal Nodal Flow Precedes Situs Inversus in iv and inv mice, Molecular Cell, vol.4, issue.4, pp.459-468, 1999.
DOI : 10.1016/S1097-2765(00)80197-5

J. Gerdes, Y. Liu, N. Zaghloul, C. Leitch, S. Lawson et al., Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response, Nature Genetics, vol.423, issue.11, pp.1350-1360, 2007.
DOI : 10.1038/ng.2007.12

URL : https://hal.archives-ouvertes.fr/pasteur-00604846

A. Ross, H. May-simera, E. Eichers, K. M. Hill, J. Jagger et al., Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates, Nature Genetics, vol.121, issue.10, pp.1135-1140, 2005.
DOI : 10.1038/77068

K. Corbit, A. Shyer, W. Dowdle, J. Gaulden, V. Singla et al., Kif3a constrains ??-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms, Nature Cell Biology, vol.102, issue.1, pp.70-76, 2008.
DOI : 10.1038/ncb1670

I. Kim, T. Ding, Y. Fu, C. Li, L. Cui et al., Conditional Mutation of Pkd2 Causes Cystogenesis and Upregulates ??-Catenin, Journal of the American Society of Nephrology, vol.20, issue.12, pp.2556-2569, 2009.
DOI : 10.1681/ASN.2009030271

S. Saadi-kheddouci, D. Berrebi, B. Romagnolo, F. Cluzeaud, M. Peuchmaur et al., Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the ??-catenin gene, Oncogene, vol.20, issue.42, pp.5972-5981, 2001.
DOI : 10.1038/sj.onc.1204825

P. Ocbina, M. Tuson, and K. Anderson, Primary Cilia Are Not Required for Normal Canonical Wnt Signaling in the Mouse Embryo, PLoS ONE, vol.6, issue.8, p.6839, 2009.
DOI : 10.1371/journal.pone.0006839.g004

M. Lancaster, C. Louie, J. Silhavy, L. Sintasath, M. Decambre et al., Impaired Wnt?????-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy, Nature Medicine, vol.3, issue.9, pp.1046-1054, 2009.
DOI : 10.1038/nm.2010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895985

V. Patel, L. Li, P. Cobo-stark, X. Shao, S. Somlo et al., Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia, Human Molecular Genetics, vol.17, issue.11, pp.1578-1590, 2008.
DOI : 10.1093/hmg/ddn045

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150596

E. Fischer, E. Legue, A. Doyen, F. Nato, J. Nicolas et al., Defective planar cell polarity in polycystic kidney disease, Nature Genetics, vol.37, issue.1, pp.21-23, 2006.
DOI : 10.1038/ng1701

S. Saburi, I. Hester, E. Fischer, M. Pontoglio, V. Eremina et al., Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease, Nature Genetics, vol.6, issue.8, pp.1010-1015, 2008.
DOI : 10.1038/sj.ki.5001534

C. Karner, R. Chirumamilla, S. Aoki, P. Igarashi, J. Wallingford et al., Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis, Nature Genetics, vol.282, issue.7, pp.793-799, 2009.
DOI : 10.1016/j.ydbio.2007.11.016

L. Solnica-krezel, Conserved Patterns of Cell Movements during Vertebrate Gastrulation, Current Biology, vol.15, issue.6, pp.213-228, 2005.
DOI : 10.1016/j.cub.2005.03.016

S. Nishio, X. Tian, A. Gallagher, Z. Yu, V. Patel et al., Loss of Oriented Cell Division Does not Initiate Cyst Formation, Journal of the American Society of Nephrology, vol.21, issue.2, pp.295-302, 2010.
DOI : 10.1681/ASN.2009060603

P. Aanstad, N. Santos, K. Corbit, P. Scherz, L. Trinh et al., The Extracellular Domain of Smoothened Regulates Ciliary Localization and Is Required for High-Level Hh Signaling, Current Biology, vol.19, issue.12, pp.1034-1039, 2009.
DOI : 10.1016/j.cub.2009.04.053

K. Corbit, P. Aanstad, V. Singla, A. Norman, D. Stainier et al., Vertebrate Smoothened functions at the primary cilium, Nature, vol.280, issue.7061, pp.1018-1021, 2005.
DOI : 10.1038/nature04117

C. Haycraft, B. Banizs, Y. Aydin-son, Q. Zhang, E. Michaud et al., Gli2 and Gli3 Localize to Cilia and Require the Intraflagellar Transport Protein Polaris for Processing and Function, PLoS Genetics, vol.12, issue.4, p.53, 2005.
DOI : 1059-1524(2001)012[0589:PAPIIL]2.0.CO;2

D. Huangfu, A. Liu, A. Rakeman, N. Murcia, L. Niswander et al., Hedgehog signalling in the mouse requires intraflagellar transport proteins, Nature, vol.426, issue.6962, pp.83-87, 2003.
DOI : 10.1038/nature02061

H. Ko, R. Norman, J. Tran, K. Fuller, M. Fukuda et al., Broad-Minded Links Cell Cycle-Related Kinase to Cilia Assembly and Hedgehog Signal Transduction, Developmental Cell, vol.18, issue.2, pp.237-247, 2010.
DOI : 10.1016/j.devcel.2009.12.014

URL : http://doi.org/10.1016/j.devcel.2009.12.014

R. Rohatgi, L. Milenkovic, and M. Scott, Patched1 Regulates Hedgehog Signaling at the Primary Cilium, Science, vol.317, issue.5836, pp.372-376, 2007.
DOI : 10.1126/science.1139740

M. Varjosalo and J. Taipale, Hedgehog: functions and mechanisms, Genes & Development, vol.22, issue.18, pp.2454-2472, 2008.
DOI : 10.1101/gad.1693608

URL : http://genesdev.cshlp.org/cgi/content/short/22/18/2454

R. Quinlan, J. Tobin, and P. Beales, Chapter 5 Modeling Ciliopathies, Curr Top Dev Biol, vol.84, pp.249-310, 2008.
DOI : 10.1016/S0070-2153(08)00605-4

V. Cantagrel, J. Silhavy, S. Bielas, D. Swistun, S. Marsh et al., Mutations in the Cilia Gene ARL13B Lead to the Classical Form of Joubert Syndrome, The American Journal of Human Genetics, vol.83, issue.2, pp.170-179, 2008.
DOI : 10.1016/j.ajhg.2008.06.023

Z. Sun, A. Amsterdam, G. Pazour, D. Cole, M. Miller et al., A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney, Development, vol.131, issue.16, pp.4085-4093, 2004.
DOI : 10.1242/dev.01240

T. Caspary, C. Larkins, and K. Anderson, The Graded Response to Sonic Hedgehog Depends on Cilia Architecture, Developmental Cell, vol.12, issue.5, pp.767-778, 2007.
DOI : 10.1016/j.devcel.2007.03.004

Y. Katoh and M. Katoh, Hedgehog signaling, epithelial-tomesenchymal transition and miRNA (review), Int J Mol Med, vol.22, pp.271-275, 2008.
DOI : 10.3892/ijmm_00000019

N. Santos and J. Reiter, Building it up and taking it down: The regulation of vertebrate ciliogenesis, Developmental Dynamics, vol.18, issue.8, pp.1972-1981, 2008.
DOI : 10.1002/dvdy.21540

S. Liu, W. Lu, T. Obara, S. Kuida, J. Lehoczky et al., A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish, Development, vol.129, issue.24, pp.5839-5846, 2002.
DOI : 10.1242/dev.00173

P. Upadhya, E. Birkenmeier, C. Birkenmeier, and J. Barker, Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice, Proceedings of the National Academy of Sciences, vol.97, issue.1, pp.217-221, 2000.
DOI : 10.1073/pnas.97.1.217

E. Otto, M. Trapp, U. Schultheiss, J. Helou, L. Quarmby et al., NEK8 Mutations Affect Ciliary and Centrosomal Localization and May Cause Nephronophthisis, Journal of the American Society of Nephrology, vol.19, issue.3, pp.587-592, 2008.
DOI : 10.1681/ASN.2007040490

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2391043

A. Robert, G. Margall-ducos, J. Guidotti, O. Brégerie, C. Celati et al., The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells, Journal of Cell Science, vol.120, issue.4, pp.628-637, 2007.
DOI : 10.1242/jcs.03366

V. Chauvet, X. Tian, H. Husson, D. Grimm, T. Wang et al., Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus, Journal of Clinical Investigation, vol.114, issue.10, pp.1433-1443, 2004.
DOI : 10.1172/JCI21753

S. Low, S. Vasanth, C. Larson, S. Mukherjee, N. Sharma et al., Polycystin-1, STAT6, and P100 Function in a Pathway that Transduces Ciliary Mechanosensation and Is Activated in Polycystic Kidney Disease, Developmental Cell, vol.10, issue.1, pp.57-69, 2006.
DOI : 10.1016/j.devcel.2005.12.005

A. Bhunia, K. Piontek, A. Boletta, L. Liu, F. Qian et al., PKD1 Induces p21waf1 and Regulation of the Cell Cycle via Direct Activation of the JAK-STAT Signaling Pathway in a Process Requiring PKD2, Cell, vol.109, issue.2, pp.157-168, 2002.
DOI : 10.1016/S0092-8674(02)00716-X

H. Kim, Y. Bae, W. Jeong, C. Ahn, and S. Kang, Depletion of PKD1 by an antisense oligodeoxynucleotide induces premature G1/S-phase transition, European Journal of Human Genetics, vol.12, issue.6, pp.433-440, 2004.
DOI : 10.1038/sj.ejhg.5201136

W. Lieberthal and J. Levine, The Role of the Mammalian Target Of Rapamycin (mTOR) in Renal Disease, Journal of the American Society of Nephrology, vol.20, issue.12, pp.2493-2502, 2009.
DOI : 10.1681/ASN.2008111186

J. Shillingford, N. Murcia, C. Larson, S. Low, R. Hedgepeth et al., The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease, Proceedings of the National Academy of Sciences, vol.103, issue.14, pp.5466-5471, 2006.
DOI : 10.1073/pnas.0509694103

N. Zaghloul, Y. Liu, J. Gerdes, C. Gascue, E. Oh et al., Functional analyses of variants reveal a significant role for dominant negative and common alleles in oligogenic Bardet-Biedl syndrome, Proceedings of the National Academy of Sciences, vol.107, issue.23, pp.10602-10607, 2010.
DOI : 10.1073/pnas.1000219107

URL : https://hal.archives-ouvertes.fr/pasteur-00604855

Y. Tao, J. Kim, R. Schrier, and C. Edelstein, Rapamycin Markedly Slows Disease Progression in a Rat Model of Polycystic Kidney Disease, Journal of the American Society of Nephrology, vol.16, issue.1, pp.46-51, 2005.
DOI : 10.1681/ASN.2004080660

J. Tobin and P. Beales, Restoration of renal function in zebrafish models of ciliopathies, Pediatric Nephrology, vol.5, issue.11, pp.2095-2099, 2008.
DOI : 10.1007/s00467-008-0898-7

P. Wahl, A. Serra, L. Hir, M. Molle, K. Hall et al., Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD), Nephrology Dialysis Transplantation, vol.21, issue.3, pp.598-604, 2006.
DOI : 10.1093/ndt/gfi181

V. Torres, A. Boletta, A. Chapman, V. Gattone, Y. Pei et al., Prospects for mTOR Inhibitor Use in Patients with Polycystic Kidney Disease and Hamartomatous Diseases, Clinical Journal of the American Society of Nephrology, vol.5, issue.7, pp.1312-1329, 2010.
DOI : 10.2215/CJN.01360210

N. Bukanov, L. Smith, K. Klinger, S. Ledbetter, and O. Ibraghimov-beskrovnaya, Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine, Nature, vol.10, issue.7121, pp.949-952, 2006.
DOI : 10.1038/nature05348

W. Sweeney, V. Vigier, R. Frost, P. Avner, and E. , Src Inhibition Ameliorates Polycystic Kidney Disease, Journal of the American Society of Nephrology, vol.19, issue.7, pp.1331-1341, 2008.
DOI : 10.1681/ASN.2007060665

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440293