C. Y. Logan and R. Nusse, THE WNT SIGNALING PATHWAY IN DEVELOPMENT AND DISEASE, Annual Review of Cell and Developmental Biology, vol.20, issue.1, pp.781-810, 2004.
DOI : 10.1146/annurev.cellbio.20.010403.113126

M. T. Veeman, J. D. Axelrod, and R. T. Moon, A Second Canon, Developmental Cell, vol.5, issue.3, pp.367-377, 2003.
DOI : 10.1016/S1534-5807(03)00266-1

H. Aberle, A. Bauer, J. Stappert, A. Kispert, and R. Kemler, ??-catenin is a target for the ubiquitin???proteasome pathway, The EMBO Journal, vol.16, issue.13, pp.3797-3804, 1997.
DOI : 10.1093/emboj/16.13.3797

D. Yan, Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/ beta-catenin signaling is elevated in human colon tumors, Proc. Natl. Acad. Sci. USA 98, pp.14973-14978, 2001.

E. H. Jho, Wnt/??-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway, Molecular and Cellular Biology, vol.22, issue.4, pp.1172-1183, 2002.
DOI : 10.1128/MCB.22.4.1172-1183.2002

J. D. Axelrod, J. R. Miller, J. M. Shulman, R. T. Moon, and N. Perrimon, Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways, Genes & Development, vol.12, issue.16, pp.2610-2622, 1998.
DOI : 10.1101/gad.12.16.2610

M. Boutros, N. Paricio, D. I. Strutt, and M. Mlodzik, Dishevelled Activates JNK and Discriminates between JNK Pathways in Planar Polarity and wingless Signaling, Cell, vol.94, issue.1, pp.109-118, 1998.
DOI : 10.1016/S0092-8674(00)81226-X

R. Keller, Shaping the Vertebrate Body Plan by Polarized Embryonic Cell Movements, Science, vol.298, issue.5600, pp.1950-1954, 2002.
DOI : 10.1126/science.1079478

E. Torban, C. Kor, and P. Gros, Van Gogh-like2 (Strabismus) and its role in planar cell polarity and convergent extension in vertebrates, Trends in Genetics, vol.20, issue.11, pp.570-577, 2004.
DOI : 10.1016/j.tig.2004.09.003

J. A. Curtin, Mutation of Celsr1 Disrupts Planar Polarity of Inner Ear Hair Cells and Causes Severe Neural Tube Defects in the Mouse, Current Biology, vol.13, issue.13, pp.1129-1133, 2003.
DOI : 10.1016/S0960-9822(03)00374-9

N. D. Greene, D. Gerrelli, H. W. Van-straaten, and A. J. Copp, Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects, Mechanisms of Development, vol.73, issue.1, pp.59-72, 1998.
DOI : 10.1016/S0925-4773(98)00029-X

Z. Kibar, Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant loop-tail, Nature Genetics, vol.28, issue.3, pp.251-255, 2001.
DOI : 10.1038/90081

Z. Kibar, Identification of a New Chemically Induced Allele (Lpm1Jus) at the Loop-Tail Locus: Morphology, Histology, and Genetic Mapping, Genomics, vol.72, issue.3, pp.331-337, 2001.
DOI : 10.1006/geno.2000.6493

M. Montcouquiol, Identification of Vangl2 and Scrb1 as planar polarity genes in mammals, Nature, vol.16, issue.6936, pp.173-177, 2003.
DOI : 10.1038/6804

D. Huangfu, Hedgehog signalling in the mouse requires intraflagellar transport proteins, Nature, vol.426, issue.6962, pp.83-87, 2003.
DOI : 10.1038/nature02061

K. C. Corbit, Vertebrate Smoothened functions at the primary cilium, Nature, vol.280, issue.7061, pp.1018-1021, 2005.
DOI : 10.1038/nature04117

A. M. Liu, B. L. Wang, and L. A. Niswander, Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors, Development, vol.132, issue.13, pp.3103-3111, 2005.
DOI : 10.1242/dev.01894

A. J. Ross, Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates, Nature Genetics, vol.121, issue.10, pp.1135-1140, 2005.
DOI : 10.1038/77068

J. L. Badano, Dissection of epistasis in oligogenic Bardet???Biedl syndrome, Nature, vol.97, issue.7074, pp.326-330, 2006.
DOI : 10.1038/nature04370

F. Marlow, E. M. Gonzalez, C. Y. Yin, C. Rojo, and L. Solnica-krezel, No tail co-operates with non-canonical Wnt signaling to regulate posterior body morphogenesis in zebrafish, Development, vol.131, issue.1, pp.203-216, 2004.
DOI : 10.1242/dev.00915

C. P. Heisenberg, Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation, Nature, vol.405, issue.6782, pp.76-81, 2000.
DOI : 10.1038/35011068

T. Ishitani, The TAK1-NLK-MAPK-related pathway antagonizes signalling between b-catenin and transcription factor TCF, Nature, vol.399, pp.798-802, 1999.

G. Weidinger, C. Thorpe, K. Wuennenberg-stapleton, J. Ngai, and R. Moon, The Sp1-Related Transcription Factors sp5 and sp5-like Act Downstream of Wnt/??-Catenin Signaling in Mesoderm and Neuroectoderm Patterning, Current Biology, vol.15, issue.6, pp.489-500, 2005.
DOI : 10.1016/j.cub.2005.01.041

O. Wessely, E. Agius, M. Oelgeschlager, E. Pera, and E. D. Robertis, Neural Induction in the Absence of Mesoderm: ??-Catenin-Dependent Expression of Secreted BMP Antagonists at the Blastula Stage in Xenopus, Developmental Biology, vol.234, issue.1, pp.161-173, 2001.
DOI : 10.1006/dbio.2001.0258

H. Nojima, Genetic evidence for involvement of maternally derived Wnt canonical signaling in dorsal determination in zebrafish, Mechanisms of Development, vol.121, issue.4, pp.371-386, 2004.
DOI : 10.1016/j.mod.2004.02.003

J. L. Rosenbaum and F. M. Child, FLAGELLAR REGENERATION IN PROTOZOAN FLAGELLATES, The Journal of Cell Biology, vol.34, issue.1, pp.345-364, 1967.
DOI : 10.1083/jcb.34.1.345

M. T. Veeman, D. C. Slusarski, A. Kaykas, S. H. Louie, and R. T. Moon, Zebrafish Prickle, a Modulator of Noncanonical Wnt/Fz Signaling, Regulates Gastrulation Movements, Current Biology, vol.13, issue.8, pp.680-685, 2003.
DOI : 10.1016/S0960-9822(03)00240-9

J. C. Kim, The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression, Nature Genetics, vol.36, issue.5, pp.462-470, 2004.
DOI : 10.1038/ng1352

V. Korinek, Constitutive Transcriptional Activation by a beta -Catenin-Tcf Complex in APC-/- Colon Carcinoma, Science, vol.275, issue.5307, pp.1784-1787, 1997.
DOI : 10.1126/science.275.5307.1784

J. R. Marszalek, P. Ruiz-lozano, E. Roberts, K. R. Chien, and L. S. Goldstein, Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II, Proc. Natl. Acad. Sci. USA 96, pp.5043-5048, 1999.
DOI : 10.1073/pnas.96.9.5043

A. Sawa, A. A. Khan, L. D. Hester, and S. H. Snyder, Glyceraldehyde-3-phosphate dehydrogenase: Nuclear translocation participates in neuronal and nonneuronal cell death, Proc. Natl. Acad. Sci. USA 94, pp.11669-11674, 1997.
DOI : 10.1073/pnas.94.21.11669

K. Itoh, B. K. Brott, G. Bae, M. J. Ratcliffe, and S. Sokol, Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling, J. Biol, vol.4, p.1, 2005.

D. J. Olson and J. Papkoff, Regulated expression of Wnt family members during proliferation of C57mg mammary cells, Cell Growth Differ, vol.5, pp.197-206, 1994.

H. Shimizu, Transformation by Wnt family proteins correlates with regulation of beta-catenin, Cell Growth Differ, vol.8, pp.1349-1358, 1997.

D. C. Slusarski, V. Corces, and R. Moon, Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling, Nature, vol.390, pp.410-413, 1997.

A. P. Chiang, Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11), Proc. Natl. Acad. Sci. USA 103, pp.6287-6292, 2006.
DOI : 10.1073/pnas.0600158103

W. C. Wigley, Dynamic Association of Proteasomal Machinery with the Centrosome, The Journal of Cell Biology, vol.273, issue.3, pp.481-490, 1999.
DOI : 10.1006/jsbi.1993.1050

G. N. Demartino, Purification of PA700, the 19S Regulatory Complex of the 26S Proteasome, Methods Enzymol, vol.398, pp.295-306, 2005.
DOI : 10.1016/S0076-6879(05)98024-5

Q. Deveraux, V. Ustrell, C. Pickart, and M. Rechsteiner, A 26 S protease subunit that binds ubiquitin conjugates, J. Biol. Chem, vol.269, pp.7059-7061, 1994.

Q. Deveraux, C. Jensen, and M. Rechsteiner, Molecular Cloning and Expression of a 26 S Protease Subunit Enriched in Dileucine Repeats, Journal of Biological Chemistry, vol.270, issue.40, pp.23726-23729, 1995.
DOI : 10.1074/jbc.270.40.23726

A. Gherman, E. Davis, and N. Katsanis, The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia, Nature Genetics, vol.38, issue.9, pp.961-962, 2006.
DOI : 10.1074/mcp.M200037-MCP200

R. Nusse, Wnt signaling in disease and in development, Cell Research, vol.101, issue.1, pp.28-32, 2005.
DOI : 10.1101/gad.267103

T. Ishitani, The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt-5a/Ca2+ Pathway To Antagonize Wnt/??-Catenin Signaling, Molecular and Cellular Biology, vol.23, issue.1, pp.131-139, 2003.
DOI : 10.1128/MCB.23.1.131-139.2003

H. Liang, Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue, Cancer Cell, vol.4, issue.5, pp.349-360, 2003.
DOI : 10.1016/S1535-6108(03)00268-X

A. J. Mikels and R. Nusse, Purified Wnt5a Protein Activates or Inhibits ??-Catenin???TCF Signaling Depending on Receptor Context, PLoS Biology, vol.16, issue.4, p.115, 2006.
DOI : 10.1371/journal.pbio.0040115.sg001

L. Topol, Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3???independent ??-catenin degradation, The Journal of Cell Biology, vol.125, issue.5, pp.899-908, 2003.
DOI : 10.1016/S1097-2765(00)80200-2

M. Simons, Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways, Nature Genetics, vol.140, issue.5, pp.537-543, 2005.
DOI : 10.1091/mbc.E02-04-0195

E. E. Davis, M. Brueckner, and N. Katsanis, The Emerging Complexity of the Vertebrate Cilium: New Functional Roles for an Ancient Organelle, Developmental Cell, vol.11, issue.1, pp.9-19, 2006.
DOI : 10.1016/j.devcel.2006.06.009

C. Thisse, B. Thisse, T. F. Schilling, and J. Postlethwait, Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos, Development, vol.119, pp.1203-1215, 1993.

K. Willert, Wnt proteins are lipid-modified and can act as stem cell growth factors, Nature, vol.367, issue.6938, pp.448-452, 2003.
DOI : 10.1084/jem.192.12.1707