R. M. Enns and G. B. Nicoll, Incidence and heritability of black wool spots in Romney sheep, New Zealand Journal of Agricultural Research, vol.45, issue.1, pp.67-70, 2002.
DOI : 10.2307/2531393

M. R. Fleet, Pigmentation types ? understanding the heritability and importance, Wool Tech. Sheep Breed, vol.44, pp.264-280, 1996.

M. R. Fleet, Development of black pigmented skin spots and pigmented wool fibres in a Merino flock???causes, field observations, and wool measurement, Australian Journal of Agricultural Research, vol.57, issue.7, 2006.
DOI : 10.1071/AR05032

M. R. Fleet and J. W. Forrest, The occurrence of spots of pigmented skin and pigmented wool fibres in adult Merino sheep, Wool Tech. Sheep Breed, vol.32, pp.83-90, 1984.

M. R. Fleet and B. Lush, Sire effects on visible pigmentation in a Corriedale flock, Wool Tech. Sheep Breed, vol.45, pp.167-173, 1997.

M. R. Fleet, R. A. Foulds, T. J. Mahar, and J. A. Turk, Relationship between pigmented fibre in raw and processed wool when other dark fibre is controlled ? a review, Int. J. Sheep Wool Sci, vol.56, pp.40-59, 2008.

J. W. Forrest and M. R. Fleet, Pigmented spots in the wool-bearing skin induced by ultraviolet light, 1986.

D. Gianola, Theory and Analysis of Threshold Characters, Journal of Animal Science, vol.54, issue.5, pp.1079-1096, 1982.
DOI : 10.2527/jas1982.5451079x

D. Gianola, On selection criteria and estimation of parameters when the variance is heterogeneous, Theoretical and Applied Genetics, vol.34, issue.5, 1986.
DOI : 10.1007/BF00289007

D. Gianola and J. L. Foulley, Sire evaluation for ordered categorical data with a threshold model, Genetics Selection Evolution, vol.15, issue.2, pp.201-224, 1983.
DOI : 10.1186/1297-9686-15-2-201

URL : https://hal.archives-ouvertes.fr/hal-00893566

J. Hadfield, MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package, J. Stat. Softw, vol.33, pp.1-22, 2010.

C. A. Matos, D. L. Thomas, D. Gianola, M. Perez-enciso, and L. D. Young, Genetic analysis of discrete reproductive traits in sheep using linear and nonlinear models: II. Goodness of fit and predictive ability., Journal of Animal Science, vol.75, issue.1, pp.88-94, 1997.
DOI : 10.2527/1997.75188x

P. J. Mccarthy, The Use of Balanced Half-Sample Replication in Cross-Validation Studies, Journal of the American Statistical Association, vol.36, issue.2, pp.596-604, 1976.
DOI : 10.1080/01621459.1975.10479865

A. Meijering and D. Gianola, Linear versus nonlinear methods of sire evaluation for categorical traits: a simulation study, Genetics Selection Evolution, vol.17, issue.1, pp.115-132, 1985.
DOI : 10.1186/1297-9686-17-1-115

URL : https://hal.archives-ouvertes.fr/hal-00893632

H. Naya, J. I. Urioste, Y. M. Chang, M. Rodriguez-motta, R. Kremer et al., A comparison between Poisson and zero-inflated Poisson regression models with and application to number of black spots in Corriedale sheep, Genet. Sel. Evol, vol.40, pp.379-394, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00606233

I. Olesen, M. Perez-enciso, D. Gianola, and D. L. Thomas, A comparison of normal and nonnormal mixed models for number lambs born in Norwegian sheep, 1994.

M. A. Perez-cabal, G. De-los-campos, A. I. Vazquez, D. Gianola, G. J. Rosa et al., Genetic evaluation of susceptibility to clinical mastitis in Spanish Holstein cows, Journal of Dairy Science, vol.92, issue.7, pp.3472-3480, 2009.
DOI : 10.3168/jds.2008-1978

M. Perez-enciso, R. J. Tempelman, and D. Gianola, A comparison between linear and poisson mixed models for litter size in iberian pigs, Livestock Production Science, vol.35, issue.3-4, pp.303-316, 1993.
DOI : 10.1016/0301-6226(93)90100-V

R. R. Picard and R. D. Cook, Cross-Validation of Regression Models, Journal of the American Statistical Association, vol.9, issue.387, pp.575-583, 1984.
DOI : 10.1080/00401706.1977.10489581

R. Development and C. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2009.

A. E. Raftery and S. M. Lewis, [Practical Markov Chain Monte Carlo]: Comment: One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo, Statistical Science, vol.7, issue.4, pp.493-497, 1992.
DOI : 10.1214/ss/1177011143

B. J. Smith, Package for MCMC Output Convergence Assessment and Posterior Inference, Journal of Statistical Software, vol.21, issue.11, 2007.
DOI : 10.18637/jss.v021.i11

D. Sorensen and D. Gianola, Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics, 2002.
DOI : 10.1007/b98952

J. I. Urioste, F. Peñ-agaricano, R. Ló-pez, C. Lafuente, J. Laporta et al., Dark skin spots and pigmentation scores in mouth-lips as indicator traits for presence of pigmented fibres in Corriedale fleeces, Proceedings of the 10th World Conference on Animal Production, Cape Town, pp.23-28, 2008.

J. I. Urioste, F. Peñ-agaricano, R. Ló-pez, J. Laporta, F. Llaneza et al., Incidence of dark skin spots and pigmentation in commercial Corriedale flocks, Proceedings of the 10th World Conference on Animal Production, pp.23-28, 2008.

A. I. Vazquez, D. Gianola, D. Bates, K. A. Weigel, and B. Heringstad, Assessment of Poisson, logit, and linear models for genetic analysis of clinical mastitis in Norwegian Red cows, Journal of Dairy Science, vol.92, issue.2, pp.739-748, 2009.
DOI : 10.3168/jds.2008-1325

F. Peñ-agaricano, Model comparison for analysis of black spots in sheep ª, Blackwell Verlag GmbH ? J. Anim. Breed. Genet, pp.1-9, 2010.