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Summary

The L,-Boosting algorithm is one of the most promising machine-learning techniques that has
appeared in recent decades. It may be applied to high-dimensional problems such as whole-genome
studies, and it is relatively simple from a computational point of view. In this study, we used this
algorithm in a genomic selection context to make predictions of yet to be observed outcomes. Two
data sets were used: (1) productive lifetime predicted transmitting abilities from 4702 Holstein sires
genotyped for 32611 single nucleotide polymorphisms (SNPs) derived from the Illumina®
BovineSNP50 BeadChip, and (2) progeny averages of food conversion rate, pre-corrected by
environmental and mate effects, in 394 broilers genotyped for 3481 SNPs. Each of these data sets
was split into training and testing sets, the latter comprising dairy or broiler sires whose ancestors
were in the training set. Two weak learners, ordinary least squares (OLS) and non-parametric (NP)
regression were used for the L,-Boosting algorithm, to provide a stringent evaluation of the
procedure. This algorithm was compared with BL [Bayesian LASSO (least absolute shrinkage and
selection operator)] and BayesA regression. Learning tasks were carried out in the training set,
whereas validation of the models was performed in the testing set. Pearson correlations between
predicted and observed responses in the dairy cattle (broiler) data set were 0-65 (0-33), 0-53 (0-37),
0-66 (0-26) and 0-63 (0-27) for OLS-Boosting, NP-Boosting, BL and BayesA, respectively. The
smallest bias and mean-squared errors (MSEs) were obtained with OLS-Boosting in both the dairy
cattle (0-08 and 1-08, respectively) and broiler (—0-011 and 0-006) data sets, respectively. In the dairy
cattle data set, the BL was more accurate (bias=0-10 and MSE =1-10) than BayesA (bias=1-26 and
MSE =2-81), whereas no differences between these two methods were found in the broiler data set.
L,-Boosting with a suitable learner was found to be a competitive alternative for genomic selection
applications, providing high accuracy and low bias in genomic-assisted evaluations with a relatively

short computational time.

1. Introduction

Considerable effort is being made to develop and im-
prove statistical models that increase cross-validation
accuracy in genome-wide association studies or
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genome-assisted prediction of phenotypes. Bayesian
methods, which use shrinkage to estimate regressions
of phenotypes on single nucleotide polymorphism
(SNP) genotypes, have gained attention for this pur-
pose. However, some of the Bayesian specifications
proposed have statistical drawbacks, such as strong
assumptions on the prior distribution of marker
variance, or difficulties in capturing complex SNP
signals (Gianola et al., 2009). Besides, these methods
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may lose accuracy when markers are sparse, e.g.
with low-density genotyping or when pre-selection
of SNPs is practiced (Solberg et al., 2008; Weigel
et al., 2009). This may be important when predicting
genomic breeding values in populations in which
large-scale genotyping is available (e.g. cattle and
poultry), or for tagging SNPs in diagnosis of genetic
diseases (Lowe et al., 2004). Non-parametric (NP)
methods seem to be less influenced by marker density
(Gianola et al., 2006; Gonzalez-Recio et al., 2008,
2009). However, this class of methods has not yet
gained as much attention as Bayesian linear re-
gression methods, probably because their inter-
pretation is less straightforward and, depending on
the implementation, may be computationally more
complex.

The use of methods that involve some sort of vari-
able selection is pertinent in problems with a large
number of predictor variables, such as genomic
selection. Machine-learning algorithms have been
introduced in a genomic selection context (Long
et al., 2007), and these may be useful for increasing
the accuracy of predictions using pre-selected SNPs
in prediction models (Szymczak et al., 2009). Boosting
is a procedure that has not yet been studied in a
genomic selection context. It is a machine-learning
ensemble method, which means that several models
are somehow combined to improve the predictive
ability. The manner in which models are combined,
labels the ensemble method (e.g. model averaging,
bagging or boosting). The original AdaBoost algor-
ithm (Freund & Schapire, 1996) and modifications
thereof have attracted much attention in several fields
of science, due to their good empirical performance.
These algorithms have been shown to be powerful
in classification problems (Opitz & Maclin, 1999).
One of the most interesting modifications is the
L,-Boosting algorithm for regression in high-
dimensional problems, which also has advantages
when a non-null covariance structure between ex-
planatory covariates exists, e.g. SNPs in high linkage
disequilibrium. This version of boosting considers
an L, loss function in a recursive fashion, and its
statistical properties and performance have been de-
scribed by several authors (e.g. Bithlmann, 2006; Lutz
et al., 2008).

The objectives of this study were: (1) to apply L,-
Boosting with two different weak learners in two dif-
ferent genome-assisted genetic evaluation scenarios
and (2) to compare L,-Boosting with BayesA and
BL [Bayesian LASSO (least absolute shrinkage and
selection operator] models, which are methods com-
monly used to compute genome-assisted evaluations.
This provides a strong test of the hypothesis of
whether or not L,-Boosting with weak learners can
attain the predictive ability of complex Bayesian
hierarchical models.
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2. Material and methods
(1) Data

Two data sets from different species (dairy cattle and
broilers) were analysed. These data sets are briefly
described next.

(a) Dairy cattle

High-density SNP genotypes of 4702 Holstein sires,
which were derived from the Illumina®™ BovineSNP50
BeadChip, and their respective progeny test predicted
transmitting abilities (PTAs) for the length of pro-
ductive life (PL), were obtained from the Bovine
Functional Genomics Laboratory and Animal
Improvement Programs Laboratory, respectively, at
the USDA-ARS Beltsville Agricultural Research
Center (Beltsville, MD). The aforementioned PTAs
were computed using a genetic evaluation model that
assumes the existence of an infinite number of loci,
each with an infinitesimally small additive effect.
Genotypes at each SNP locus were coded arbitrarily
as 0 (homozygous for allele B), 1 (heterozygous),
2 (homozygous for allele b) or 5 (missing). The 38416
SNPs used in the study of VanRaden et al. (2009)
were edited further. Monomorphic SNPs, SNPs with
minor allele frequency (MAF) <0-05, and SNPs with
>10% missing genotypes were excluded from the
analyses. Information from flanking markers was
used to impute the most probable genotypes for other
loci with missing genotypes, based on the conditional
probability of observing a particular configuration
at a locus in question given genotypes at both neigh-
bouring markers. This led to a total of 32611 SNPs
for the analyses described herein. The data were
split such that a training data set contained ancestors
and contemporary individuals, and a testing set rep-
resented the progeny of these individuals whose
phenotypes (PTAs) were regarded as yet to be ob-
served. The training set included PL PTAs (standard-
ized to attain a distribution with a null mean and
variance equal to 1) from the 2003 routine genetic
evaluation of 3304 sires born before 1998. The testing
set included the standardized PL PTAs from the 2008
routine genetic evaluation of 1398 sires born after
1998. Further details on this data set are in Weigel
et al. (2009).

(b) Broilers

The data consisted of average food conversion rate
(FCR) records of the progeny of 394 sires from a
commercial broiler line in the breeding program of
Aviagen Ltd (Newbridge, Scotland, UK). Prior to the
analyses, the individual bird FCR records were ad-
justed for environmental and mate of sire effects.
Genotypes consisted of 4505 SNPs distributed along
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the genome. All SNPs with monomorphic genotypes
or with MAF <5% were excluded. After editing,
genotypes consisted of 3481 SNPs. The data set was
also split into training and testing sets. Sires included
in the testing set were required to have more than 20
progeny with FCR records to ensure a reliable mean
phenotype, and they were required to have sires in the
training set. Sixty-one sires (15-5% of the total) were
included in the testing set, whereas the remaining 333
sires were in the training set. Predictions were calcu-
lated from the training set, and the accuracy of pre-
dicting the mean progeny phenotype was assessed
using sons in the testing set. More details on this data
set can be found in Gonzalez-Recio et al. (2009).

In the two data sets, the same families could be
represented in both training and testing sets, so the
procedures utilize both linkage disequilibrium and
linkage information. Clustering different families
within either training or testing sets is difficult when
using livestock data, because families and generations
usually overlap. From a genomic selection point of
view, the approach utilized herein is realistic, because
the typical objective is to determine which sires are to
be chosen from the current population for use as
parents of the next generation.

(i1) L,-Boosting for high-density genotypes

This learning technique is based on the AdaBoost
algorithm described by Freund & Schapire (1996),
and it combines several weak learners to form a
‘committee’ with potentially greater predictive ability
than that of any of the individual learners. A weak
learner is defined as a predictive method with a
slightly better performance than random guessing.
Although boosting was originally designed for classi-
fication problems, it was extended to regression by
Friedman (2001). Biihlmann & Yu (2003) proposed
a version of boosting with the L, loss function for
regression and classification, which is called L,-
Boosting. The L, loss function measures the degree of
wrongness of the predictions using a quadratic term
with the form L, loss=f(y —9) =(y— )% The authors
also showed that L,-Boosting may be used for re-
gression in high-dimensional problems by doing some
type of covariate selection through a small-step
gradient descent. The L,-Boosting algorithm for re-
gression problems involving s genomic markers (with
s being very large and possibly s>>n, where n is the
training sample size) is described next.
Consider the model

y=g(x,)+e,

where y is an n x 1 vector of records; X, is a vector of
genotype codes of n individuals for the SNP locus
p; g(X,) is an unknown function to be learned and
interpretable as E(y|x,) and e is a vector of residuals
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assumed to be identically and independently dis-
tributed, and also independent of x,. Different
learners may be used to learn about g(x,). Here, two
different learners (linear and non-linear) were em-
ployed. The linear learner was ordinary least squares
(OLS; OLS-BOOST) regression, and the non-linear
learner was NP (NP-BOOST) regression. 4 priori, NP
would be expected to capture both additive and non-
additive signals. Once the learners have been set, the
boosting algorithm works as follows:

Step 1 (Initialization): Given the data (y, x), apply
the weak learner procedure to each SNP one at a time,
yielding the function estimate fo(-) = g(x,,), where g(x,)
is estimated from the original data set, with
p=argmin,y_ (y;—&(x;,)*. Set m=1. Let the
prediction of phenotypes be y=7,( - ).

Step 2. Compute residuals as rmzy—ZT:olvﬁ( ),
and fit the weak learner for each SNP p(p e 1, ..., s) to
current residuals, where v is a shrinkage parameter
describing the step size when updating the residuals.
Without loss of generality, v can be assumed as con-
stant and small (0 <v< 1), but it may be optimized to
balance the predictive ability and computation time.
Select SNP p, where p=arg min, Y (r;—&(x; ,))*
and set f,,(-) =£(x,). Here, v equal to 0-1 and 0-01 was
used for OLS-BOOST and NP-BOOST, respectively.

Step 3. Update predictions as p7'= " 1+f,.(r;,
Xip), (ie{l,...,n}), where f,(r;, x;,) is the estimate
for individual i obtained by regressing the current
residual (r;) at iteration m on its genotype for SNP
P (xi,p)-

Step 4. Increase the iteration index m by 1, and re-
peat steps 2—4 until a convergence criterion is reached.

As stated, the two weak learners used were OLS-
BOOST and NP-BOOST. The NP learner is less
commonly known and a description is given in
Appendix A. Boosting yields an additive model whose
terms are fitted in a stepwise fashion. Note that the
function g(x,) does not assume linearity when using
NP- BOOST.

Boosting algorithms for regression have been in-
terpreted as functional gradient descent techniques
(Biihlmann, 2006), and L,-Boosting may be viewed as
a sequence of Hilbert spaces in what is known as a
‘weak greedy algorithm’. Boosting is one of the most
successful and practical methods in the machine-
learning field. It has great flexibility and can capture
complexity introduced by covariates, such as SNPs.
Although it was first thought as a black box, its stat-
istical properties have been described by some authors
(Biihlmann, 2006 ; Cornillon et al., 2008).

(iii) Convergence criterion

This can be viewed as a model selection problem, and
stopping rules based on criteria such as the Bayesian
Information Criterion (BIC), Akaike Information
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Criterion (AIC), a corrected version of AIC (AIC,),
or generalized cross validation (GCV) can be used.
Other criteria have been proposed, but there is some
consensus on the benefits of GCV (Biihlmann, 2006;
Cornillon et al., 2008 ; Lutz et al., 2008). In this study,
a 10-fold cross validation was utilized to tune the op-
timal number of iterations, as follows. Ten per cent of
the observations, which were randomly sampled from
the training set, were kept as the tuning set. Steps 1, 2
and 3 of the boosting algorithm were performed on
the training set, without including observations of the
tuning set. The convergence criterion (Step 4) was
determined as follows. Mean-squared error (MSE)
was computed in the tuning set at each iteration as

t
MSE tune=1"1Y (y,— )%
j:l

where ¢ is the number of individuals in the tuning set,
y;is the observed response of individual j in the tuning
set and ), is its predicted response calculated at each
iteration after selecting the SNPs that minimized
MSE in the training set. The optimal number of
iterations was that which minimized MSE in the
tuning set, after running a large enough number of
iterations. Note that the training set was used to make
the inferences, and the tuning set to determine the
iteration at which the algorithm would be stopped.

Predictions in the testing set were computed at the
optimal iteration. Since a 10-fold GCV was used, 10
independent tuning sets were created in 10 different
analyses, and predictions in the testing set were aver-
aged across runs. Note that this GCV scheme creates
independence between the testing and tuning sets. The
maximum number of boosting iterations was set to
5000. An illustration of the algorithm framework is
given in Fig. 1.

These two boosting algorithms were compared with
BayesA and BL, two methods that have received at-
tention in genomic selection (Meuwissen et al., 2001 ;
de los Campos et al., 2009; Weigel et al., 2009).
Details on BayesA and BL are given in Appendices B
and C, respectively. For these methods, a tuning set is
not necessary and the whole training set was used for
inferences.

There is some similarity between L,-Boosting and
LASSO. However, these methods differ as shown by
Biihlmann (2006), and a different variance-bias trade-
off is achieved by each approach. They also differ in
the maximum number of predictor variables allowed
in the model. The maximum number of covariates
selected by the original LASSO, as proposed by
Tibshirani (1996), is min(#n, s+ 1) including an inter-
cept, where s is the number of covariates. In the
Bayesian counterpart of LASSO (Park & Casella,
2008), all estimates of regressions on markers are
shrunk towards zero (but never set to exactly zero)

Fig. 1. Schematic diagram of the boosting framework.
Each weak learner f,,(y, X) is trained on a weighted form
of the training set (=), which are the residuals from the
previous weak learner (- »). The weak learner is tested on
a tuning set at each iteration. Once all weak learners have
been trained, those from iteration 1 to that minimizing
MSE in the tuning set are combined to provide final
estimates y (--»). Adapted from Bishop (2006).

using a conditional Laplace prior assigned to re-
gression coefficients. In this case, the maximum
number of influential covariates is s, and an ad-hoc
threshold must be used to set the number of desired
covariates, if so desired. On the other hand, the
number of covariates selected in L,-Boosting depends
on the number of iterations until the chosen conver-
gence criterion is reached, and a particular covariate
could be selected several times or might not be sel-
ected at all.

(iv) Validation criteria

Correlations between true and predicted phenotypes
and MSE for each method were calculated. Larger
correlations and smaller MSE values indicate better
performance of the model. Bias was calculated as
s _ (vi—J), where s is the number of individuals
in the testing set. 4 priori, a method with smaller bias
is preferable unless its variance is too large.

Realized observations in the testing set (yes;) Were
regressed on their predictions (Vs) as

Vst =a+ b- ylcsl tée,

where a is the intercept, b is a regression coefficient
and ¢ is a residual. An unbiased method is expected to
have a=0 and b=1. Values of the slope that are
above or below one would indicate under-prediction
or over-prediction, respectively.

3. Results and discussion

The estimated shrinkage parameter 4 of BL was 205-9
for the dairy cattle data set and 69-5 for the broiler
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Fig. 2. MSE at each iteration for OLS-BOOST and NP-BOOST in the dairy cattle tuning set in each of the 10 folds (grey

line) and the averaged MSE across folds (black solid line).
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Fig. 3. MSE at each iteration for OLS-BOOST and NP-BOOST in the broiler tuning set in each of the 10 folds (grey line)
and the averaged MSE across folds (black solid line). For convenience, only the first 1000 iterations are shown.

data set, with posterior standard deviations equal
to 2:4 and 2-2, respectively. These estimates suggest
greater shrinkage in the dairy data, which was ex-
pected due to the larger number of markers in this
data set. The average time per iteration (calculated in
the same workstation) in the dairy cattle data set was
12-4 s for BayesA, 12-1s for BL, 3-4s for OLS-
BOOST and 4:1 h for NP-BOOST; whereas 0:04 s
were needed for BayesA, BL and OLS-BOOST and
16:66 s for NP-BOOST in the broiler data set. Note
also that the number of iterations needed was lower
for the boosting algorithms. OLS-BOOST required
less computer time than the other methods, which
may be an advantage when using large data sets with
several thousands or millions of markers. The NP-
BOOST algorithm seemed to be too time-consuming
in large data sets. Nonetheless, the time per iteration
is dependent on hardware and software used.

Figures 2 and 3 show the MSE obtained for each
fold of GCV in the tuning set at each iteration of
OLS-BOOST and NP-BOOST in the cattle and
poultry data sets, respectively. These plots allow the

visual inspection of convergence of the boosting al-
gorithm. With a smaller step size (v), the algorithm
converged more slowly. OLS-BOOST (MSE=0-96)
had better performance than NP-BOOST (MSE =
1-23) in the dairy cattle tuning set. It must be pointed
out though that NP-BOOST was not optimized in this
data set, because the computation time per iteration
was prohibitive. Because of slow convergence, the
step size v=0-01 in NP-BOOST was increased to
v=1, resulting in under-performance of this weak
learner. It is essential to monitor the tuning set, be-
cause L,-Boosting often yields the fully saturated
model, which fits the training data perfectly, and the
bias and prediction variance explode as iteration
proceeds (Biihimann & Yu, 2003). Initial iterations of
the algorithm are expected to have a large bias and a
low prediction variance. As the model becomes more
complex, with a larger number of SNPs having a non-
zero effect, the algorithm uses the training set more
effectively and is able to adapt to more complicated
underlying genetic systems. This may lead to lower
bias but higher variance, which suggests over-fitting in
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Table 1. Pearson correlation between yet to be
observed records and their predictions in each testing
set for Ly-Boosting with OLS regression or NP
regression as weak learners, BayesA and BL

Method Dairy cattle Broilers
OLS-BOOST 0-65 0-33
NP-BOOST 0-531 0-37
BayesA 0-63 0-272
BL 0-66 0-26

1 Results not optimized due to large computation time per
iteration.
Z Results from Gonzalez-Recio ef al. (2009).

the training set. Hence, the algorithm must be stopped
at an iteration that provides intermediate complexity
for the prediction of future records.

Pearson correlations of predictions obtained with
each method in the testing sets are shown in Table 1.
Pearson correlations between predicted and observed
phenotypes were similar for all methods in the dairy
cattle data set, ranging between 0-63 and 0-66, except
for NP-BOOST, which yielded a Pearson correlation
of 0-53 without optimizing the algorithm, due to the
computation time, as stated above. These correlations
were similar to those obtained by VanRaden ef al.
(2009), who regressed daughter yield deviations for
PL on 40426 SNPs in a sample from the same
Holstein population using a linear Bayesian re-
gression model with an adjustment for the reliability
of parent average. In the broiler data, L,-Boosting pro-
duced larger Pearson correlations (OLS-BOOST =
0-33 and NP-BOOST =0-37) than those obtained with
Bayesian regressions (0-26—0-27). The L,-Boosting
algorithm with NP as a weak learner had up to 42 %
greater accuracy than the linear Bayesian regression
models using progeny means as response variables in
the broiler data set. In this data set, the NP weak
learner outperformed OLS in prediction accuracy,
suggesting that it may capture more genetic (additive
and non-additive) variance from the data.

The Pearson correlation obtained with L,-Boosting
was larger than those obtained by Gonzalez-Recio
et al. (2009) and Long et al. (2010) using different
models on the same data set. However, confidence
intervals presented by Gonzalez-Recio et al. (2009)
overlapped with those obtained in this study, and
Long et al. (2010) found a slightly smaller MSE using
radial basis functions.

Bias and MSE of predictions from each method are
shown in Table 2. The OLS-BOOST algorithm had
the smallest MSE (1-08) in the dairy cattle testing set
followed by BL (1-10), and in the broiler data set
(0-006) followed by NP-BOOST (also 0-:006). BayesA
had the poorest MSE (2-81) in the dairy cattle data
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Table 2. Bias and MSE of predicted responses in each
testing set for Ly-Boosting with OLS regression or
NP regression as weak learners, BayesA and BL

Dairy cattle Broilers
Method Bias MSE Bias MSE
OLS-BOOST 0-08 1-08 —0-011 0-006
NP-BOOST 0-57* 1-671 —0-018 0-006
BayesA 1-26 2-81 —0-0162 0-0072
BL 0-10 1-10 —0-010 0-007

1 Results not optimized due to large computing time per
iteration.
2 Results from Gonzalez-Recio et al. (2009).

set, and this was almost 2-6 times greater than the
MSE obtained with OLS-BOOST. However, in the
broiler data set, MSE was similar for all four methods,
with a slight advantage for boosting. OLS-BOOST
and BL produced the smallest bias in both dairy cattle
(0-08 and 0-10, respectively) and broiler (—0-011 and
—0-010, respectively) data. BayesA and NP-BOOST
had the largest bias in the dairy cattle (1-26, 0-57) and
broiler (—0-016, —0-018) data sets. Differences in bias
between OLS-BOOST and BL in the dairy cattle data
set have to be taken cautiously, as phenotype dis-
tributions in the training and testing data sets were
normalized and centred, ignoring the genetic trend
that, although small, may exist.

The Bayesian regression methods estimated the
slope of the regression of observed on predicted
values at 0-71 and 1-34 in the dairy cattle data set
(Fig. 4). Bayesian regression methods produced
smaller slopes (0-36) in the broiler data set (Fig. 5).
These results suggest better agreement between ob-
served responses and their predictions obtained with
L,-Boosting. The BL and BayesA tended to under-
estimate the true progeny means in the broiler data,
whereas OLS-BOOST overestimated them.

Similar regression coefficients ranging between
0-71 and 0-86 have been found by other authors
(VanRaden et al., 2009; Aguilar et al., 2010) for
overall conformation, working with a similar popu-
lation but using different versions of the so-called
‘genomic BLUP’ (VanRaden, 2008). Aguilar et al.
(2010) obtained a regression of observed on predicted
response of 0-86 using a single-step approach with
phenotypes from several million animals. Results ob-
tained with OLS-BOOST in this study were similar to
those recently reported by the USDA for the same
trait (the squared correlation was 0-31 and the slope
of the regression was estimated at 1-08), but that study
used a larger number of records and used daughter
yield deviation as response variable, instead of the
PTA values used here.
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Fig. 4. Relationship between 2008 progeny test PTA for productive lifetime (y) and 2003 genomic PTA (y_hat) in a testing
set comprised 1398 Holstein bulls born from 1999 to 2002 using L,-Boosting with OLS regression or NP regression as
weak learners, and with BayesA and BL. Intercept and slope estimates from the linear regressions are given.

In summary, BL and OLS-BOOST had better pre-
dictive ability in the dairy cattle data set than BayesA
and NP-BOOST. The two former methods provided
greater accuracy (larger Pearson correlation and
smaller MSE), with some advantages for OLS-
BOOST in terms of bias. In the broiler data set, L,-
Boosting provided the highest correlations and
smallest MSE of prediction of yet-to-be observed
phenotypes although NP-BOOST showed some bias.
It must be pointed out that the need for a tuning set
in the L,-Boosting algorithm may be a disadvantage
relative to BL and BayesA, which use the whole
training set for making inferences. The main differ-
ence between L,-Boosting and other methods com-
monly used, such as partial least squares, Bayesian
regressions or reproducing kernel Hilbert spaces is
that L,-Boosting is trained using a sequence of re-
siduals from previous iterations in a weighted fashion.
Only the covariate (SNP) that minimizes the loss
function is used at each iteration, and a small step is
taken towards modelling the real observations.

Differences between these data sets must be em-
phasized. The dairy cattle data set had a larger number
of data points and SNPs, and its response variable

was PTAs predicted from a model that assumed ad-
ditivity and normality, which is expected to reflect
additive genetic effects only, instead of the average
progeny performance,. Also, as stated earlier, a PTA
is a smoothed product from a predictive model which
may hide signals that are actually present in the data,
although it is expected to account for some part of
epistatic variance acting in an additive manner (Hill
et al., 2008). It must be pointed out that PTA may
also include a contribution from parents’ infor-
mation.

Several authors have shown that boosting may in-
crease accuracy in regression analysis. For example,
Friedman (2001) and Opitz & Maclin (1999) reported
benefits of boosting using 23 different data sets, in-
dicating that it can create ensembles that are often
more accurate than those from other ensemble meth-
ods, such as bagging (Breiman, 1996). However, Opitz
& Maclin (1999) also showed that the Ada-Boosting
algorithm may be sensitive to noisy data and may be
prone to over-fitting, although this was later ques-
tioned by Bithlmann & Yu (2006).

Results from our study suggest that performance of
L,-Boosting may depend on the weak learner chosen
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Fig. 5. Relationship between observed average FCR, adjusted by environmental and mate effects, (y) and the genomic
predicted FCR (y_hat) in a testing set comprised 61 broilers, which were progeny of 394 broilers in the training set
using L,-Boosting with OLS regression or NP regression as weak learners, and BayesA and BL. Intercept and slope

estimates from the linear regressions are given.

and the step size used. We used two arbitrarily chosen
weak learners from a large variety of candidates, and
the performance of each may depend on the underly-
ing problem (state of nature). Further, a small value
of the step-size parameter (v) should be used for
convenience, but it can be optimized, if possible, when
computing time is a limiting factor. Smaller values of
v increase the degree of weakness of a learner. Smaller
values of v were tested for both learners (results not
shown), without improving accuracy, but with a cor-
responding increase in the computing time (except
for NP-BOOST in the dairy cattle data set, as noted
above).

The results obtained in this study should hold pro-
vided there is genetic or molecular similarity, whereas
the absence thereof may yield different performance,
but this must be evaluated on a case-by-case basis.

4. Conclusions

Our results highlight the potential ability of L,-
Boosting of attaining high accuracy and small bias in
high-dimensional problems, such as genomic selection,
when a suitable weak learner is used. This makes

such algorithms appealing for selecting signal covari-
ates in whole-genome studies. L,-Boosting seemed to
be appealing for scenarios in which more noise exists.
BL may yield similar accuracy as L,-Boosting under
linear and additive scenarios. In a genomic selection
context, a higher correlation between predicted and
observed responses is desirable, and the boosting
algorithm seemed competitive in this regard. Other
methods commonly used in genomic-assisted evalu-
ation yielded similar accuracy, as shown here and in
recent scientific literature. However, unbiased and
reliable predictions are necessary to compare animals
or plants in commercial breeding programmes.
Differences in MSE and bias may assist in determin-
ing which method is preferred for the prediction of
individual total genomic merit of the traits of interest
in a given species.

Overall, L,-Boosting seems to be a viable alterna-
tive to more widely used methods of the prediction of
the total genomic merit of animals and plants that are
candidates as parents of future generations. However,
its promising behaviour must be studied further in
a whole genomic evaluation context. Among other
issues, the choice of weak learner, stopping criterion,
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step-size parameter and programming strategy (such
as parallelization) may be considered in future studies
to improve the performance of the algorithm.
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Appendix A

A NP regression on genomic markers for animal
breeding was proposed first by Gianola et al. (2006)
and applied to chicken mortality by Gonzalez-Recio
et al. (2008). Consider the model

y=g(x;) +e,

where y=y; is the (n x 1) vector of responses and x; is
a (nx 1) vector representing the genotype of individ-
uvali(ie {1, ...,n}) for p SNP loci. Here, g(x;) is some
unknown function representing the expected response
value of individuals with SNP genotype x;, i.e. the
conditional expectation function E(y|x;). The random
vector of residuals, e=¢;, is assumed identically and
independently distributed. Here, the conditional ex-
pectation function given a vector of codes for the SNP
locus p

[yp(x,y)dy

8%,)= p(x)

was inferred using the Nadaraya—Watson estimator
(Nadaraya, 1964; Watson, 1964). The numerator and
denominator in the expression above can be estimated
as

1 n
/ ypx,p)dy = — > yiKy(x—x;)
nh /=
and
0~ 3 K-
p ~ nh = h i)

respectively, where n is the number of data points
and Kj,(x—x;) is a kernel function, with smoothing
parameter A, which measures ‘genomic distance’ be-
tween pairs of individuals. More details on this
model are in Gianola et al. (2006) and Gonzalez-
Recio et al. (2008). A Gaussian kernel was used,
K(x—x;)=exp[—3:(x—x,)*], where (x—x;) is the
genomic distance measurement. This naive metric
showed good performance in pilot studies. The gen-
omic distance was calculated as the number of different
alleles between individuals for a given SNP. The
smoothing parameter /1 controls the decay of the
function. Here, an SNP-specific & was set fixed to in-
crease computational performance (i.e. each SNP had
a possibly different /). A reasonably large value (20 %
of genomic distance range for each SNP, selected ad
hoc according to the predictive ability in the testing
set) was used, as suggested by Cornillon et al. (2008).

Appendix B

BayesA is as a Bayesian regression on SNPs assum-
ing marker-specific variances. The model may be
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expressed as
y=Xp+e,

where f={f,} is, e.g. the vector of 32611 SNPs re-
gression coefficients assumed to be distributed as
B,~N(, a) (p=1-32611), where 0}, is the variance
of the uncertainty distribution of the effect of marker
p, assumed to be distributed as the scaled inverse chi-
square a ~ U, va , with v, =4 and 5,2 =0.002 for all
p. The remdudl variance (02) was assumed to follow
the scaled inverse chi-square prior distribution
0 ~ vesiy, ', with v, =5 and s2=0.7. X was the inci-
dence matrix relating regression coefficients on SNPs
to y. Details may be found in Meuwissen et al. (2001).

BayesA was implemented via Gibbs sampling,
consisting of a single chain of 25000 iterations, with
the first 5000 iterations discarded as burn-in. The con-
vergence of chains was inspected visually. Predicted
responses in the testing set were calculated by multi-
plying the posterior mean of estimated coefficients by
the respective SNP genotype codes of sires in the
testing set, and summing over SNP loci.

Appendix C

The Bayesian counterpart of the LASSO described
by Park & Casella (2008) was used to estimate the
regressions on markers f,. The original LASSO
(Tibshirani, 1996) assumes the following loss func-
tion:

P
min (y—XB)(y=Xp)+4 ¥ |B,1.
p=1

for some A >0, which controls the extent of shrinkage
of regressions. Park & Casella (2008) suggested a fully
BL with a conditional Laplace distribution placed on
the regressions, that is

p(Blo?) H

~

—/Wf

where 02 is the residual variance. Inferences about 4
may be done in different ways (Park & Casella, 2008).
The model was

y=XpB+e,

where f={f,} is the vector of 32611 SNPs regression
coefficients. Laplace priors were assigned to the SNP
coefficients as stated above, and o? was assumed to
follow the scaled inverse chi-square prior distribution
02 ~ USax, ', with v, =5 and s¢=0.7. Here, a gamma
prior was assumed for A%, with known rate (r) and
shape (0) hyper-parameters, as described by de los
Campos et al. (2009). Hyper-parameters for the

gamma prior distribution on A*> were r=10 and
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0=0-1. Elements of the incidence matrix X-related
regression coefficients for SNPs to y.

The BL was implemented via Gibbs sampling,
consisting of a single chain of 25 000 iterations, with
the first 5000 iterations discarded as burn-in. The
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convergence of chains was inspected visually.
Predicted responses in the testing set were calculated
by multiplying the posterior means of estimated
coefficients by the respective SNP genotype codes of
sires in the testing set, and summing over SNP.



