P. Desjeux, Leishmaniasis: current situation and new perspectives, Comparative Immunology, Microbiology and Infectious Diseases, vol.27, issue.5, pp.305-318, 2004.
DOI : 10.1016/j.cimid.2004.03.004

J. Alvar, S. Yactayo, and C. Bern, Leishmaniasis and poverty, Trends in Parasitology, vol.22, issue.12, pp.552-557, 2006.
DOI : 10.1016/j.pt.2006.09.004

B. Alexander and M. Maroli, Control of phlebotomine sandflies, Medical and Veterinary Entomology, vol.37, issue.1, pp.1-18, 2003.
DOI : 10.1046/j.1365-2915.2000.00211.x

E. Handman, Leishmaniasis: Current Status of Vaccine Development, Clinical Microbiology Reviews, vol.14, issue.2, pp.229-243, 2000.
DOI : 10.1128/CMR.14.2.229-243.2001

J. Ribeiro, Role of Saliva in Blood-Feeding by Arthropods, Annual Review of Entomology, vol.32, issue.1, pp.463-478, 1987.
DOI : 10.1146/annurev.en.32.010187.002335

R. Titus and J. Riberiro, Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity, Science, vol.239, issue.4845, pp.1306-1308, 1988.
DOI : 10.1126/science.3344436

M. Mbow, J. Bleyenberg, L. Hall, and R. Titus, Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major, J Immunol, vol.161, pp.5571-5577, 1998.

Y. Belkaid, S. Kamhawi, G. Modi, J. Valenzuela, N. Noben-trauth et al., Infection in the Mouse Ear Dermis, The Journal of Experimental Medicine, vol.70, issue.10, pp.1941-1953, 1998.
DOI : 10.1126/science.271.5251.987

S. Kamhawi, Y. Belkaid, G. Modi, E. Rowton, and D. Sacks, Protection Against Cutaneous Leishmaniasis Resulting from Bites of Uninfected Sand Flies, Science, vol.290, issue.5495, pp.1351-1354, 2000.
DOI : 10.1126/science.290.5495.1351

J. Valenzuela, Y. Belkaid, M. Garfiela, S. Mendez, S. Kamhawi et al., Vaccine Targeting Vector Antigens, The Journal of Experimental Medicine, vol.62, issue.3, pp.331-342, 2001.
DOI : 10.4049/jimmunol.166.8.5122

B. Ahmed, S. Chelbi, I. Kaabi, B. Cherni, S. Derbali et al., Differences in the Salivary Effects of Wild-Caught Versus Colonized Phlebotomus papatasi (Diptera: Psychodidae) on the Development of Zoonotic Cutaneous Leishmaniasis in BALB/c Mice, Journal of Medical Entomology, vol.47, issue.1, pp.74-79, 2010.
DOI : 10.1093/jmedent/47.1.74

URL : https://hal.archives-ouvertes.fr/pasteur-00604860

I. Chelbi, M. Derbali, Z. Al-ahmadi, B. Zaafouri, E. Fahem et al., Phenology of Phlebotomus papatasi (Diptera: Psychodidae) Relative to the Seasonal Prevalence of Zoonotic Cutaneous Leishmaniasis in Central Tunisia, Journal of Medical Entomology, vol.44, issue.2, pp.385-388, 2007.
DOI : 10.1093/jmedent/44.2.385

I. Chelbi and E. Zhioua, Biology of <I>Phlebotomus papatasi</I> (Diptera: Psychodidae) in the Laboratory, Journal of Medical Entomology, vol.44, issue.4, pp.597-600, 2007.
DOI : 10.1603/0022-2585(2007)44[597:BOPPDP]2.0.CO;2

P. Volf, P. Tesarova, and E. Nohynkova, Salivary proteins and glycoproteins in phlebotomine sandflies of various species, sex and age, Medical and Veterinary Entomology, vol.345, issue.3, pp.251-256, 2000.
DOI : 10.1016/0304-4017(93)90033-J

B. Ahmed, S. Bahloul, C. Robbana, C. Askri, S. Dellagi et al., A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major, Vaccine, vol.22, issue.13-14, pp.1631-1639, 2004.
DOI : 10.1016/j.vaccine.2003.10.046

P. Buffer, A. Sulahian, Y. Garin, N. Nassar, and F. Derouin, Culture microtitration: a sensitive method for quantifying Leishmania infantum in tissues of infected mice, Antimicrobial Agents and Chemotherapy, vol.39, issue.9, pp.2167-2168, 1995.
DOI : 10.1128/AAC.39.9.2167

N. Laird and J. Ware, Random-Effects Models for Longitudinal Data, Biometrics, vol.38, issue.4, pp.963-974, 1982.
DOI : 10.2307/2529876

D. Bauer, Constructing Confidence Sets Using Rank Statistics, Journal of the American Statistical Association, vol.42, issue.339, pp.687-690, 1972.
DOI : 10.2307/1266308

D. Kwiatkowski, P. Phillips, P. Schmidt, and Y. Shin, Testing the null hypothesis of stationarity against the alternative of a unit root, Journal of Econometrics, vol.54, issue.1-3, pp.159-178, 1992.
DOI : 10.1016/0304-4076(92)90104-Y

I. Rohousova, J. Hostomoska, M. Vlokva, T. Kobets, M. Lipoldova et al., The protective effect against Leishmania infection conferred by sand fly bites is limited to short-term exposure, International Journal for Parasitology, vol.41, issue.5, pp.481-485, 2011.
DOI : 10.1016/j.ijpara.2011.01.003

T. De-moura, F. Olivera, F. Novais, J. Miranda, I. Follador et al., Enhanced Leishmania braziliensis Infection Following Pre-Exposure to Sandfly Saliva, PLoS Neglected Tropical Diseases, vol.14, issue.1, p.84, 2007.
DOI : 10.1371/journal.pntd.0000084.g008

J. Chmelar, J. Anderson, J. Mu, R. Jochim, J. Valenzuela et al., Insight into the sialome of the castor bean tick, Ixodes ricinus, BMC Genomics, vol.9, issue.1, p.233, 2008.
DOI : 10.1186/1471-2164-9-233

G. Lanzaro, A. Lopes, J. Riberiro, C. Shoemaker, A. Warburg et al., Variation in the salivary peptide, maxadilan, from species in the Lutzomyia longipalpis complex, Insect Molecular Biology, vol.8, issue.2, pp.267-275, 1999.
DOI : 10.1046/j.1365-2583.1999.820267.x

R. Milleron, J. Mutebi, S. Valle, A. Montoya, H. Yin et al., Antigenic diversity in maxadilan, a salivary protein from the sand fly vector of American visceral leishmaniasis, Am J Trop Med Hyg, vol.70, pp.278-283, 2004.

B. Ahmed, S. Kaabi, B. Chelbi, I. Cherni, S. Derbali et al., Lack of Protection of Pre-Immunization with Saliva of Long-Term Colonized Phlebotomus papatasi against Experimental Challenge with Leishmania major and Saliva of Wild-Caught P. papatasi, American Journal of Tropical Medicine and Hygiene, vol.83, issue.3, pp.512-514, 2010.
DOI : 10.4269/ajtmh.2010.09-0687

URL : https://hal.archives-ouvertes.fr/pasteur-00620991

M. Laurenti, V. Silveira, N. Secundino, and C. Corbett, Pimenta PP: Saliva of laboratory-reared Lutzomyia longipalpis exacerbates Leishmania

B. Hadj and A. , http://www.parasitesandvectors.com/content (leishmania) amazonensis infection more potently than saliva of wildcaught Lutzomyia longipalpis, Parasites & Vectors Parasitol Inter, vol.441, issue.58, pp.126126220-226, 2009.

M. Laurenti, V. Da-matta, T. Pernichelli, N. Secundino, L. Pinto et al., Infection, Scandinavian Journal of Immunology, vol.17, issue.4, pp.389-395, 2009.
DOI : 10.1111/j.1365-3083.2009.02310.x

D. Elnaiem, C. Meneses, M. Slotman, and G. Lanzaro, Genetic variation in the sand fly salivary protein, SP-15, a potential vaccine candidate against Leishmania major, Insect Molecular Biology, vol.345, issue.2, pp.145-150, 2005.
DOI : 10.1084/jem.194.3.331

L. Lorenz, B. Beaty, T. Aitken, G. Wallis, and W. Tabachnik, The effect of colonization upon Aedes aegypti susceptibility to oral infection with yellow fever virus, Am J Trop Med Hyg, vol.33, pp.690-694, 1984.

W. Wu and R. Tesh, Selection of Phlebotomus papatasi (Diptera: Psychodidae) line susceptible and refractory to Leishmania major infection, Am J Trop Med Hyg, vol.42, pp.320-328, 1990.

W. Wu and R. Tesh, Genetic factors controlling susceptibility and refractoriness to Leishmania major infection in the sand fly Phlebotomus papatasi (Diptera: Psychodidae), Am J Trop Med Hyg, vol.42, pp.329-334, 1990.

H. Kassem, D. Fryauff, M. Shehata, and B. Sawaf, Enzyme Polymorphism and Genetic Variability of One Colonized and Several Field Populations of Phlebotomus papatasi (Diptera: Psychodidae), Journal of Medical Entomology, vol.30, issue.2, pp.407-413, 1993.
DOI : 10.1093/jmedent/30.2.407

J. Mukhopadhyay, E. Rangel, K. Ghosh, and L. Munstermann, Patterns of genetic variability in colonized strains of Lutzomyia longipalplis (Dipter: Psychodidae) and its consequences, Am J Trop Med Hyg, vol.57, pp.216-221, 1997.

F. Oliveira, P. Lawyer, S. Kamhawi, and J. Valenzuela, Immunity to Distinct Sand Fly Salivary Proteins Primes the Anti-Leishmania Immune Response towards Protection or Exacerbation of Disease, PLoS Neglected Tropical Diseases, vol.2, issue.4, p.226, 2008.
DOI : 10.1371/journal.pntd.0000226.t001