J. R. Basile, A. Eichten, V. Zacny, and K. Munger, NF-kappaB-mediated induction of p21(Cip1/Waf1) by tumor necrosis factor alpha induces growth arrest and cytoprotection in normal human keratinocytes, Mol Cancer Res, vol.1, pp.262-270, 2003.

J. R. Basile, V. Zacny, and K. Munger, The cytokines tumor necrosis factoralpha (TNF-alpha ) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein, J Biol Chem, vol.276, pp.22522-22528, 2001.

S. Bellanger, S. Blachon, F. Mechali, C. Bonne-andrea, and F. Thierry, , 2005.

, High-risk but not low-risk HPV E2 proteins bind to the APC activators Cdh1 and Cdc20 and cause genomic instability, Cell Cycle, vol.4, pp.1608-1615, 1629.

S. Bellanger, C. Demeret, S. Goyat, and F. Thierry, Stability of the human 250 papillomavirus type 18 E2 protein is regulated by a proteasome degradation pathway through its amino-terminal transactivation domain, J Virol, vol.75, pp.7244-7251, 2001.

S. Blachon, S. Bellanger, C. Demeret, and F. Thierry, nucleo-cytoplasmic shuttling of high-risk HPV E2 proteins induces apoptosis, J BiolChem, vol.280, pp.36088-36098, 2005.

P. Cassonnet, C. Rolloy, G. Neveu, P. O. Vidalain, T. Chantier et al., SPICA : sensitive high-throughput assay for the detection of binary and ternary protein-protein interactions

Z. J. Chen and L. J. Sun, Nonproteolytic functions of ubiquitin in cell signaling, Mol Cell, vol.33, pp.275-286, 2009.

C. Desaintes and C. Demeret, Control of papillomavirus DNA replication and transcription. seminars in cancer biology, vol.7, pp.339-347, 1996.

C. Desaintes, S. Goyat, S. Garbay, M. Yaniv, and F. Thierry, , 1999.

, Papillomavirus E2 induces p53-independent apoptosis in HeLa cells, Oncogene, vol.18, pp.4538-4546

J. Doorbar, Molecular biology of human papillomavirus infection and cervical cancer, Clin Sci (Lond), vol.110, pp.525-541, 2006.

H. Habelhah, S. Takahashi, S. G. Cho, T. Kadoya, T. Watanabe et al., Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB, EMBO J, vol.23, pp.322-332, 2004.

D. Hadaschik, K. Hinterkeuser, M. Oldak, H. J. Pfister, and S. Smola-hess, The Papillomavirus E2 protein binds to and synergizes with C/EBP factors involved in keratinocyte differentiation, J Virol, vol.77, pp.5253-5265, 2003.

J. Hiscott, H. Kwon, and P. Genin, Hostile takeovers: viral appropriation of the NF-kappaB pathway, J Clin Invest, vol.107, pp.143-151, 2001.

M. A. James, J. H. Lee, and A. J. Klingelhutz, Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against 280 apoptosis in a PDZ binding motif-dependent manner, J Virol, vol.80, pp.5301-5307, 2006.

C. Journo, J. Filipe, F. About, S. A. Chevalier, P. V. Afonso et al., NRP/Optineurin Cooperates with TAX1BP1 to potentiate the activation of NF-kappaB by human T-lymphotropic virus type 1 tax protein, PLoS Pathog, vol.5, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00455158

B. Lamothe, A. Besse, A. D. Campos, W. K. Webster, H. Wu et al., Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation, J Biol Chem, vol.282, pp.4102-4112, 2007.

M. A. Lomaga, W. C. Yeh, I. Sarosi, G. S. Duncan, C. Furlonger et al., TRAF6 deficiency results in osteopetrosis and defective interleukin1, CD40, and LPS signaling, vol.13, pp.1015-1024, 1999.

A. A. Mcbride, J. G. Oliveira, and M. G. Mcphillips, Partitioning viral genomes in mitosis: same idea, different targets, Cell Cycle, vol.5, pp.1499-1502, 2006.

A. Nair, M. Venkatraman, T. T. Maliekal, B. Nair, and D. Karunagaran, NFkappaB is constitutively activated in high-grade squamous intraepithelial 300 lesions and squamous cell carcinomas of the human uterine cervix, Oncogene, vol.22, pp.50-58, 2003.

M. Nees, J. M. Geoghegan, T. Hyman, S. Frank, L. Miller et al., Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NFkappaB-responsive genes in cervical keratinocytes, J Virol, vol.75, pp.4283-4296, 2001.

M. Oldak, H. Smola, M. Aumailley, F. Rivero, H. Pfister et al., The human papillomavirus type 8 E2 protein suppresses beta4integrin expression in primary human keratinocytes, J Virol, vol.78, pp.10738-10746, 2004.

R. Pfefferle, G. P. Marcuzzi, B. Akgul, H. U. Kasper, F. Schulze et al., , p.310

C. Wickenhauser and H. Pfister, The Human Papillomavirus Type 8 E2 Protein Induces Skin Tumors in Transgenic Mice, J Invest Dermatol, vol.10, p.10, 2008.

N. Shembade, N. S. Harhaj, D. J. Liebl, and E. W. Harhaj, Essential role for TAX1BP1 in the termination of TNF-alpha-, IL-1-and LPS-mediated NFkappaB and JNK signaling, Embo J, vol.26, pp.3910-3922, 2007.

D. Spitkovsky, S. P. Hehner, T. G. Hofmann, A. Moller, and M. L. Schmitz, The human papillomavirus oncoprotein E7 attenuates NF-kappa B activation by targeting the Ikappa B kinase complex, J Biol Chem, vol.277, pp.25576-25582, 2002.

K. Tada, T. Okazaki, S. Sakon, T. Kobarai, K. Kurosawa et al., , p.320

H. , Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death, J Biol Chem, vol.276, pp.36530-36534, 2001.

F. Thierry and C. Demeret, Direct activation of caspase 8 by the proapoptotic E2 protein of HPV18 independent of adaptor proteins, Cell Death Differ, vol.15, pp.1356-1363, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01971518

F. Thierry, N. Dostatni, F. Arnos, and M. Yaniv, Cooperative activation of transcription by bovine papillomavirus type 1 E2 can occur over a large distance, Mol Cell Biol, vol.10, pp.4431-4437, 1990.

H. K. Wang, A. A. Duffy, T. R. Broker, and L. T. Chow, Robust production 330 and passaging of infectious HPV in squamous epithelium of primary human keratinocytes, Genes Dev, vol.23, pp.181-194, 2009.

X. Wang, S. R. Naidu, F. Sverdrup, and E. J. Androphy, Tax1BP1 interacts with papillomavirus E2 and regulates E2-dependent transcription and stability, J Virol, vol.83, pp.2274-2284, 2008.

P. Xu, D. M. Duong, N. T. Seyfried, D. Cheng, Y. Xie et al., Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation, Cell, vol.137, pp.133-145, 2009.

. P-poliii-ren, Luciferase activity was measured 360 20 hours post transfection ( mean of triplicate samples) (b) HaCaT cells were cotransfected with expression plasmid for cherry-Tax1BP1 and GAPDH-directed SiRNA (control) or Tax1BP1-directed Si-RNA. Cherry-Tax1BP1 was detected with antiDsRed Polyclonal antibody, anti-?tubulin was used to normalize for loading. (c) HaCaT cells transfected with p-NF?B-Luc, p-polIII Ren, and GFP (control), GFP-5 E2 or GFP-18 E2 expression plasmids were treated with TNF-? (20 ng/ml) or IL1 (20 ng/ml) before Luciferase activity was measured, GFP-5 E2, GFP-18 E2 or GFP (control) expression plasmids, together with Tax1BP1 Si-RNA or GAPDH Si-RNA (cont)

, Thirty hours post transfection, cell extracts (Habelhah et al., 2004) were subjected to immunoprecipitation (IP) with rabbit anti-GFP antibodies. Immunoprecipitates were analyzed by western blots with anti-GFP, followed by antiHA antibodies. Anti-GFP and anti-18E2 western blots were performed on cell extracts. (b) SPICA experiments were performed in 293 cells, The interplay of E2 with TRAF signaling intermediates. (a) 293 T cells were transfected with GFP-TRAF2, vol.3