L. Stamatatos, L. Morris, D. Burton, and J. Mascola, Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine?, Nature Medicine, vol.453, pp.866-870, 2009.
DOI : 10.1038/nm.1949

P. Poignard, E. Saphire, P. Parren, and D. Burton, GP120: Biologic Aspects of Structural Features, Annual Review of Immunology, vol.19, issue.1, pp.253-274, 2001.
DOI : 10.1146/annurev.immunol.19.1.253

D. Burton, J. Pyati, R. Koduri, S. Sharp, G. Thornton et al., Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody, Science, vol.266, issue.5187, pp.1024-1027, 1994.
DOI : 10.1126/science.7973652

J. Moore, Y. Cao, L. Qing, Q. Sattentau, J. Pyati et al., Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120, J Virol, vol.69, pp.101-109, 1995.

T. Muster, F. Steindl, M. Purtscher, A. Trkola, A. Klima et al., A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1, J Virol, vol.67, pp.6642-6647, 1993.

T. Muster, R. Guinea, A. Trkola, M. Purtscher, A. Klima et al., Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS, J Virol, vol.68, pp.4031-4034, 1994.

G. Stiegler, R. Kunert, M. Purtscher, S. Wolbank, R. Voglauer et al., A Potent Cross-Clade Neutralizing Human Monoclonal Antibody against a Novel Epitope on gp41 of Human Immunodeficiency Virus Type 1, AIDS Research and Human Retroviruses, vol.17, issue.18, pp.1757-1765, 2001.
DOI : 10.1089/08892220152741450

A. Trkola, A. Pomales, H. Yuan, B. Korber, P. Maddon et al., Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG, J Virol, vol.69, pp.6609-6617, 1995.

A. Trkola, M. Purtscher, T. Muster, C. Ballaun, A. Buchacher et al., Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1, J Virol, vol.70, pp.1100-1108, 1996.

L. Walker, S. Phogat, P. Chan-hui, D. Wagner, P. Phung et al., Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target, Science, vol.326, issue.5950, pp.285-289, 2009.
DOI : 10.1126/science.1178746

M. Zwick, A. Labrijn, M. Wang, C. Spenlehauer, E. Saphire et al., Broadly Neutralizing Antibodies Targeted to the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 Glycoprotein gp41, Journal of Virology, vol.75, issue.22, pp.10892-10905, 2001.
DOI : 10.1128/JVI.75.22.10892-10905.2001

X. Wu, Z. Yang, Y. Li, C. Hogerkorp, W. Schief et al., Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1, Science, vol.329, issue.5993, pp.856-861, 2010.
DOI : 10.1126/science.1187659

T. Zhou, I. Georgiev, X. Wu, Z. Yang, K. Dai et al., Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01, Science, vol.329, issue.5993, pp.811-817, 2010.
DOI : 10.1126/science.1192819

P. Kwong and I. Wilson, HIV-1 and influenza antibodies: seeing antigens in new ways, Nature Immunology, vol.455, issue.6, pp.573-578, 2009.
DOI : 10.1038/ni.1746

S. Kozak, J. Heard, and D. Kabat, Segregation of CD4 and CXCR4 into Distinct Lipid Microdomains in T Lymphocytes Suggests a Mechanism for Membrane Destabilization by Human Immunodeficiency Virus, Journal of Virology, vol.76, issue.4, pp.1802-1815, 2002.
DOI : 10.1128/JVI.76.4.1802-1815.2002

D. Nguyen, B. Giri, G. Collins, and D. Taub, Dynamic reorganization of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to sites of CD4 engagement, Experimental Cell Research, vol.304, issue.2, pp.559-569, 2005.
DOI : 10.1016/j.yexcr.2004.11.022

Y. Percherancier, B. Lagane, T. Planchenault, I. Staropoli, R. Altmeyer et al., HIV-1 Entry into T-cells Is Not Dependent on CD4 and CCR5 Localization to Sphingolipid-enriched, Detergent-resistant, Raft Membrane Domains, Journal of Biological Chemistry, vol.278, issue.5, pp.3153-3161, 2003.
DOI : 10.1074/jbc.M207371200

W. Popik, T. Alce, and W. Au, Human Immunodeficiency Virus Type 1 Uses Lipid Raft-Colocalized CD4 and Chemokine Receptors for Productive Entry into CD4+ T Cells, Journal of Virology, vol.76, issue.10, pp.4709-4722, 2002.
DOI : 10.1128/JVI.76.10.4709-4722.2002

D. Dimitrov, Fusin ??? a place for HIV???1 and T4 cells to meet, Nature Medicine, vol.9, issue.6, pp.640-641, 1996.
DOI : 10.1038/337525a0

R. Lacasse, K. Follis, M. Trahey, J. Scarborough, D. Littman et al., Fusion-Competent Vaccines: Broad Neutralization of Primary Isolates of HIV, Science, vol.283, issue.5400, pp.357-362, 1999.
DOI : 10.1126/science.283.5400.357

M. Moulard, S. Phogat, Y. Shu, A. Labrijn, X. Xiao et al., Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4-CCR5 complexes, Proceedings of the National Academy of Sciences, vol.99, issue.10, pp.6913-6918, 2002.
DOI : 10.1073/pnas.102562599

M. Zhang and D. Dimitrov, Novel Approaches for Identification of Broadly Cross-Reactive HIV-1 Neutralizing Human Monoclonal Antibodies and Improvement of Their Potency, Current Pharmaceutical Design, vol.13, issue.2, pp.203-212, 2007.
DOI : 10.2174/138161207779313669

S. Lee, L. Garza, J. Yao, A. Notkins, and P. Zhou, A Nonneutralizing Anti-HIV-1 Antibody Turns into a Neutralizing Antibody When Expressed on the Surface of HIV-1-Susceptible Cells: A New Way to Fight HIV, The Journal of Immunology, vol.173, issue.7, pp.4618-4626, 2004.
DOI : 10.4049/jimmunol.173.7.4618

S. Lee, R. Arora, L. Bull, R. Arduino, L. Garza et al., A Nonneutralizing Anti-HIV Type 1 Antibody Turns into a Broad Neutralizing Antibody When Expressed on the Surface of HIV Type 1-Susceptible Cells. II. Inhibition of HIV Type 1 Captured and Transferred by DC-SIGN, AIDS Research and Human Retroviruses, vol.22, issue.9, pp.874-883, 2006.
DOI : 10.1089/aid.2006.22.874

J. Xu, M. Gorny, T. Palker, S. Karwowska, and S. Zolla-pazner, Epitope mapping of two immunodominant domains of gp41, the transmembrane protein of human immunodeficiency virus type 1, using ten human monoclonal antibodies, J Virol, vol.65, pp.4832-4838, 1991.

R. Wyatt and J. Sodroski, The HIV-1 Envelope Glycoproteins: Fusogens, Antigens, and Immunogens, Science, vol.280, issue.5371, pp.1884-1888, 1998.
DOI : 10.1126/science.280.5371.1884

M. Egelhofer, G. Brandenburg, H. Martinius, P. Schult-dietrich, G. Melikyan et al., Inhibition of Human Immunodeficiency Virus Type 1 Entry in Cells Expressing gp41-Derived Peptides, Journal of Virology, vol.78, issue.2, pp.568-575, 2004.
DOI : 10.1128/JVI.78.2.568-575.2004

G. Melikyan, M. Egelhofer, and D. Von-laer, Membrane-Anchored Inhibitory Peptides Capture Human Immunodeficiency Virus Type 1 gp41 Conformations That Engage the Target Membrane prior to Fusion, Journal of Virology, vol.80, issue.7, pp.3249-3258, 2006.
DOI : 10.1128/JVI.80.7.3249-3258.2006

M. Medof, S. Nagarajan, and M. Tykocinski, Cell-surface engineering with GPIanchored proteins, FASEB J, vol.10, pp.574-586, 1996.

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.387, issue.6633, pp.569-572, 1997.
DOI : 10.1038/42408

N. Chazal and D. Gerlier, Virus Entry, Assembly, Budding, and Membrane Rafts, Microbiology and Molecular Biology Reviews, vol.67, issue.2, pp.226-237, 2003.
DOI : 10.1128/MMBR.67.2.226-237.2003

URL : https://hal.archives-ouvertes.fr/hal-00113108

G. Carter, L. Bernstone, D. Sangani, J. Bee, T. Harder et al., HIV entry in macrophages is dependent on intact lipid rafts, Virology, vol.386, issue.1, pp.192-202, 2009.
DOI : 10.1016/j.virol.2008.12.031

Z. Liao, L. Cimakasky, R. Hampton, D. Nguyen, and J. Hildreth, Lipid Rafts and HIV Pathogenesis: Host Membrane Cholesterol Is Required for Infection by HIV Type 1, AIDS Research and Human Retroviruses, vol.17, issue.11, pp.1009-1019, 2001.
DOI : 10.1089/088922201300343690

J. De-haard, B. Kazemier, P. Oudshoorn, P. Boender, B. Van-gemen et al., Selection of human anti-human immunodeficiency virus type 1 envelope singlechain antibodies from a peripheral blood cell-based phage repertoire, J Gen Virol, pp.792883-2894, 1998.

M. Thali, J. Moore, C. Furman, M. Charles, D. Ho et al., Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding, J Virol, vol.67, pp.3978-3988, 1993.

M. Medof, T. Kinoshita, and V. Nussenzweig, Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes, Journal of Experimental Medicine, vol.160, issue.5, pp.1558-1578, 1984.
DOI : 10.1084/jem.160.5.1558

C. Tsai, C. Caillet, H. Hu, F. Zhou, H. Ding et al., Measurement of neutralizing antibody responses against H5N1 clades in immunized mice and ferrets using pseudotypes expressing influenza hemagglutinin and neuraminidase, Vaccine, vol.27, issue.48, pp.6777-6790, 2009.
DOI : 10.1016/j.vaccine.2009.08.056

URL : https://hal.archives-ouvertes.fr/pasteur-00625272

A. Miller and F. Chen, Retrovirus packaging cells based on 10A1 murine leukemia virus for production of vectors that use multiple receptors for cell entry, J Virol, vol.70, pp.5564-5571, 1996.

A. Labrijn, P. Poignard, A. Raja, M. Zwick, K. Delgado et al., Access of Antibody Molecules to the Conserved Coreceptor Binding Site on Glycoprotein gp120 Is Sterically Restricted on Primary Human Immunodeficiency Virus Type 1, Journal of Virology, vol.77, issue.19, pp.10557-10565, 2003.
DOI : 10.1128/JVI.77.19.10557-10565.2003

P. Kwong, R. Wyatt, J. Robinson, R. Sweet, J. Sodroski et al., Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody, Nature, vol.393, pp.648-659, 1998.

T. Zhou, L. Xu, B. Dey, A. Hessell, D. Van-ryk et al., Structural definition of a conserved neutralization epitope on HIV-1 gp120, Nature, vol.40, issue.7129, pp.732-737, 2007.
DOI : 10.1038/nature05580

J. Binley, S. Ngo-abdalla, P. Moore, M. Bobardt, U. Chatterji et al., de Parseval A: Inhibition of HIV Env binding to cellular receptors by monoclonal antibody 2G12 as probed by Fc-tagged gp120, Retrovirology, vol.3, issue.1, p.39, 2006.
DOI : 10.1186/1742-4690-3-39

H. Yu, A. Rabson, M. Kaul, R. Y. Dougherty, and J. , Inducible human immunodeficiency virus type 1 packaging cell lines, J Virol, vol.70, pp.4530-4537, 1996.

C. Nobile, C. Petit, A. Moris, K. Skrabal, J. Abastado et al., Covert Human Immunodeficiency Virus Replication in Dendritic Cells and in DC-SIGN-Expressing Cells Promotes Long-Term Transmission to Lymphocytes, Journal of Virology, vol.79, issue.9, pp.5386-5399, 2005.
DOI : 10.1128/JVI.79.9.5386-5399.2005

URL : https://hal.archives-ouvertes.fr/pasteur-01372653

D. Digiusto, A. Krishnan, L. Li, H. Li, S. Li et al., RNA-based gene therapy for HIV with lentiviral vectormodified CD34(+) cells in patients undergoing transplantation for AIDSrelated lymphoma, Sci Transl Med, vol.2, pp.36-43, 2010.

C. Huang, M. Tang, M. Zhang, S. Majeed, E. Montabana et al., Structure of a V3-Containing HIV-1 gp120 Core, Science, vol.310, issue.5750, pp.1025-1028, 2005.
DOI : 10.1126/science.1118398

S. Bavari, C. Bosio, E. Wiegand, G. Ruthel, A. Will et al., Lipid Raft Microdomains, The Journal of Experimental Medicine, vol.69, issue.5, pp.593-602, 2002.
DOI : 10.1083/jcb.153.3.529

S. Manie, S. De-breyne, S. Vincent, and D. Gerlier, Measles Virus Structural Components Are Enriched into Lipid Raft Microdomains: a Potential Cellular Location for Virus Assembly, Journal of Virology, vol.74, issue.1, pp.305-311, 2000.
DOI : 10.1128/JVI.74.1.305-311.2000

W. Pickl, F. Pimentel-muinos, and B. Seed, Lipid Rafts and Pseudotyping, Journal of Virology, vol.75, issue.15, pp.7175-7183, 2001.
DOI : 10.1128/JVI.75.15.7175-7183.2001

P. Scheiffele, M. Roth, and K. Simons, Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain, The EMBO Journal, vol.16, issue.18, pp.5501-5508, 1997.
DOI : 10.1093/emboj/16.18.5501

S. Vincent, D. Gerlier, and M. Sn, Measles Virus Assembly within Membrane Rafts, Journal of Virology, vol.74, issue.21, pp.9911-9915, 2000.
DOI : 10.1128/JVI.74.21.9911-9915.2000

C. Chung, C. Huang, and W. Chang, Vaccinia Virus Penetration Requires Cholesterol and Results in Specific Viral Envelope Proteins Associated with Lipid Rafts, Journal of Virology, vol.79, issue.3, pp.1623-1634, 2005.
DOI : 10.1128/JVI.79.3.1623-1634.2005

G. Li, Y. Li, M. Yamate, S. Li, and K. Ikuta, Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle, Microbes and Infection, vol.9, issue.1, pp.96-102, 2007.
DOI : 10.1016/j.micinf.2006.10.015

A. Funk, M. Mhamdi, H. Hohenberg, J. Heeren, R. Reimer et al., Duck Hepatitis B Virus Requires Cholesterol for Endosomal Escape during Virus Entry, Journal of Virology, vol.82, issue.21, pp.10532-10542, 2008.
DOI : 10.1128/JVI.00422-08

X. Lu and J. Silver, Ecotropic Murine Leukemia Virus Receptor Is Physically Associated with Caveolin and Membrane Rafts, Virology, vol.276, issue.2, pp.251-258, 2000.
DOI : 10.1006/viro.2000.0555

F. Bender, J. Whitbeck, M. Ponce-de-leon, H. Lou, R. Eisenberg et al., Specific Association of Glycoprotein B with Lipid Rafts during Herpes Simplex Virus Entry, Journal of Virology, vol.77, issue.17, pp.9542-9552, 2003.
DOI : 10.1128/JVI.77.17.9542-9552.2003

C. Derdeyn, J. Decker, J. Sfakianos, X. Wu, O. Brien et al., Sensitivity of Human Immunodeficiency Virus Type 1 to the Fusion Inhibitor T-20 Is Modulated by Coreceptor Specificity Defined by the V3 Loop of gp120, Journal of Virology, vol.74, issue.18, pp.8358-8367, 2000.
DOI : 10.1128/JVI.74.18.8358-8367.2000

E. Platt, K. Wehrly, S. Kuhmann, B. Chesebro, and D. Kabat, Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1, J Virol, vol.72, pp.2855-2864, 1998.

C. Prodromou and L. Pearl, Recursive PCR: a novel technique for total gene synthesis, "Protein Engineering, Design and Selection", vol.5, issue.8, pp.827-829, 1992.
DOI : 10.1093/protein/5.8.827

A. Follenzi, L. Ailles, S. Bakovic, M. Geuna, and L. Naldini, Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV- 1 pol sequences, Nat Genet, vol.25, pp.217-222, 2000.

C. Huang, M. Venturi, S. Majeed, M. Moore, S. Phogat et al., Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120, Proceedings of the National Academy of Sciences, vol.101, issue.9, pp.2706-2711, 2004.
DOI : 10.1073/pnas.0308527100

J. He, S. Choe, R. Walker, D. Marzio, P. Morgan et al., Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity, J Virol, vol.69, pp.6705-6711, 1995.

J. Overbaugh, R. Anderson, J. Ndinya-achola, and J. Kreiss, Distinct but Related Human Immunodeficiency Virus Type 1 Variant Populations in Genital Secretions and Blood, AIDS Research and Human Retroviruses, vol.12, issue.2, pp.107-115, 1996.
DOI : 10.1089/aid.1996.12.107

Y. Koyanagi, S. Miles, R. Mitsuyasu, J. Merrill, H. Vinters et al., Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms, Science, vol.236, issue.4803, pp.819-822, 1987.
DOI : 10.1126/science.3646751

Y. Li, J. Kappes, J. Conway, R. Price, G. Shaw et al., Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes, J Virol, vol.65, pp.3973-3985, 1991.

T. Theodore, G. Englund, A. Buckler-white, C. Buckler, M. Martin et al., : Construction and Characterization of a Stable Full-Length Macrophage-Tropic HIV Type 1 Molecular Clone That Directs the Production of High Titers of Progeny Virions, AIDS Research and Human Retroviruses, vol.12, issue.3, pp.191-194, 1996.
DOI : 10.1089/aid.1996.12.191

E. Freed, D. Myers, and R. Risser, Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160, J Virol, vol.63, pp.4670-4675, 1989.

D. Kothe, J. Decker, Y. Li, Z. Weng, F. Bibollet-ruche et al., Antigenicity and immunogenicity of HIV-1 consensus subtype B envelope glycoproteins, Virology, vol.360, issue.1, pp.218-234, 2007.
DOI : 10.1016/j.virol.2006.10.017

T. Ndung-'u, B. Renjifo, and M. Essex, Construction and Analysis of an Infectious Human Immunodeficiency Virus Type 1 Subtype C Molecular Clone, Journal of Virology, vol.75, issue.11, pp.4964-4972, 2001.
DOI : 10.1128/JVI.75.11.4964-4972.2001

P. Zhou, J. Lee, P. Moore, and K. Brasky, High-efficiency gene transfer into rhesus macaque primary T lymphocytes by combining 32 degrees C centrifugation and CH-296-coated plates: effect of gene transfer protocol on T cell homing receptor expression, pp.1843-1855, 2001.

Y. Kimata, M. Cella, M. Biggins, J. Rorex, C. White et al., Capture and Transfer of Simian Immunodeficiency Virus by Macaque Dendritic Cells Is Enhanced by DC-SIGN, Journal of Virology, vol.76, issue.23, pp.11827-11836, 2002.
DOI : 10.1128/JVI.76.23.11827-11836.2002

. Wen, GPI-anchored single chain Fv - an effective way to capture transiently-exposed neutralization epitopes on HIV-1 envelope spike, Retrovirology, vol.7, issue.1, 20107.
DOI : 10.1186/1742-4690-7-79

URL : https://hal.archives-ouvertes.fr/pasteur-00624954