L. H. Pinto, L. J. Holsinger, and R. A. Lamb, Influenza virus M2 protein has ion channel activity, Cell, vol.69, issue.3, pp.517-528, 1992.
DOI : 10.1016/0092-8674(92)90452-I

J. S. Towner, T. V. Ho, and B. L. Semler, Determinants of membrane association for poliovirus protein 3AB, J. Biol. Chem, vol.271, pp.26810-26818, 1996.

J. Lama and L. Carrasco, Expression of poliovirus nonstructural proteins in Escherichia coli cells. Modification of membrane permeability induced by 2B and 3A, J. Biol. Chem, vol.267, pp.15932-15937, 1992.

J. R. Doedens and K. Kirkegaard, Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A, EMBO J, vol.14, pp.894-907, 1995.

V. Madan, S. Sanchez-martinez, N. Vedovato, G. Rispoli, L. Carrasco et al., Plasma Membrane-porating Domain in Poliovirus 2B Protein. A Short Peptide Mimics Viroporin Activity, Journal of Molecular Biology, vol.374, issue.4, pp.374-951, 2007.
DOI : 10.1016/j.jmb.2007.09.058

F. J. Van-kuppeveld, J. G. Hoenderop, R. L. Smeets, P. H. Willems, H. B. Dijkman et al., Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release, The EMBO Journal, vol.16, issue.12, pp.3519-3532, 1997.
DOI : 10.1093/emboj/16.12.3519

A. S. De-jong, E. Wessels, H. B. Dijkman, J. M. Galama, W. J. Melchers et al., Determinants for Membrane Association and Permeabilization of the Coxsackievirus 2B Protein and the Identification of the Golgi Complex as the Target Organelle, Journal of Biological Chemistry, vol.278, issue.2, pp.278-1012, 2003.
DOI : 10.1074/jbc.M207745200

P. Liljeström and H. Garoff, Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor, J. Virol, vol.65, pp.147-154, 1991.

M. A. Sanz, V. Madan, L. Carrasco, and J. L. Nieva, Interfacial Domains in Sindbis Virus 6K Protein: DETECTION AND FUNCTIONAL CHARACTERIZATION, Journal of Biological Chemistry, vol.278, issue.3, pp.278-2051, 2003.
DOI : 10.1074/jbc.M206611200

J. V. Melton, G. D. Ewart, R. C. Weir, P. G. Board, E. Lee et al., Alphavirus 6K Proteins Form Ion Channels, Journal of Biological Chemistry, vol.277, issue.49, pp.277-46923, 2002.
DOI : 10.1074/jbc.M207847200

URL : http://hdl.handle.net/1885/73116

G. D. Ewart, T. Sutherland, P. W. Gage, and G. B. Cox, The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels, J. Virol, pp.70-7108, 1996.

U. Schubert, A. V. Ferrer-montiel, M. Oblatt-montal, P. Henklein, K. Strebel et al., Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells, FEBS Letters, vol.47, issue.1, pp.398-410, 1996.
DOI : 10.1016/S0014-5793(96)01146-5

S. W. Gan, L. Ng, X. Lin, X. Gong, and J. Torres, Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain, Protein Science, vol.73, issue.5, pp.813-820, 2008.
DOI : 10.1110/ps.073366208

L. H. Pinto, G. R. Dieckmann, C. S. Gandhi, C. G. Papworth, J. Braman et al., A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity, Proceedings of the National Academy of Sciences, vol.94, issue.21, pp.94-11301, 1997.
DOI : 10.1073/pnas.94.21.11301

M. T. Tosteson, L. H. Pinto, L. J. Holsinger, and R. A. Lamb, Reconstitution of the influenza virus M2 ion channel in lipid bilayers, The Journal of Membrane Biology, vol.142, issue.1, pp.142-117, 1994.
DOI : 10.1007/BF00233389

N. A. Sunstrom, L. S. Premkumar, A. Premkumar, G. Ewart, G. B. Cox et al., Ion Channels Formed by NB, an Influenza B Virus Protein, Journal of Membrane Biology, vol.150, issue.2, pp.150-127, 1996.
DOI : 10.1007/s002329900037

A. Premkumar, G. D. Ewart, G. B. Cox, and P. W. Gage, An Amino-Acid Substitution in the Influenza-B NB Protein Affects Ion-Channel Gating, Journal of Membrane Biology, vol.197, issue.3, pp.135-143, 2004.
DOI : 10.1007/s00232-004-0648-0

J. A. Mould, R. G. Paterson, M. Takeda, Y. Ohigashi, P. Venkataraman et al., Influenza B Virus BM2 Protein Has Ion Channel Activity that Conducts Protons across Membranes, Developmental Cell, vol.5, issue.1, pp.175-184, 2003.
DOI : 10.1016/S1534-5807(03)00190-4

URL : http://doi.org/10.1016/s1534-5807(03)00190-4

C. Ma, C. S. Soto, Y. Ohigashi, A. Taylor, V. Bournas et al., Identification of the Pore-lining Residues of the BM2 Ion Channel Protein of Influenza B Virus, Journal of Biological Chemistry, vol.283, issue.23, pp.283-15921, 2008.
DOI : 10.1074/jbc.M710302200

S. Hongo, K. Sugawara, Y. Muraki, Y. Matsuzaki, E. Takashita et al., Influenza C virus CM2 protein is produced from a 374-amino-acid protein (P42) by signal peptidase cleavage, J. Virol, pp.73-119, 1999.

A. Pekosz and R. A. Lamb, Influenza C virus CM2 integral membrane glycoprotein is produced from a polypeptide precursor by cleavage of an internal signal sequence, Proceedings of the National Academy of Sciences, vol.95, issue.22, pp.95-13233, 1998.
DOI : 10.1073/pnas.95.22.13233

A. Pekosz and R. A. Lamb, The CM2 Protein of Influenza C Virus Is an Oligomeric Integral Membrane Glycoprotein Structurally Analogous to Influenza A Virus M2and Influenza B Virus NB Proteins, Virology, vol.237, issue.2, pp.439-451, 1997.
DOI : 10.1006/viro.1997.8788

S. Hongo, K. Ishii, K. Mori, E. Takashita, Y. Muraki et al., Detection of ion channel activity in Xenopus laevis oocytes expressing Influenza C virus CM2 protein, Archives of Virology, vol.149, issue.1, pp.149-184, 2004.
DOI : 10.1007/s00705-003-0209-3

G. Bodelon, L. Labrada, J. Martinez-costas, and J. Benavente, Modification of Late Membrane Permeability in Avian Reovirus-infected Cells: VIROPORIN ACTIVITY OF THE S1-ENCODED NONSTRUCTURAL p10 PROTEIN, Journal of Biological Chemistry, vol.277, issue.20, pp.277-17789, 2002.
DOI : 10.1074/jbc.M202018200

S. D. Griffin, L. P. Beales, D. S. Clarke, O. Worsfold, S. D. Evans et al., The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine, FEBS Letters, vol.181, issue.1-3, pp.535-569, 2003.
DOI : 10.1016/S0014-5793(02)03851-6

D. Pavlovic, D. C. Neville, O. Argaud, B. Blumberg, R. A. Dwek et al., The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives, Proceedings of the National Academy of Sciences, vol.100, issue.10, pp.6104-6108, 2003.
DOI : 10.1073/pnas.1031527100

B. Plugge, S. Gazzarrini, M. Nelson, R. Cerana, J. L. Van-etten et al., A Potassium Channel Protein Encoded by Chlorella Virus PBCV-1, Science, vol.287, issue.5458, pp.1641-1644, 2000.
DOI : 10.1126/science.287.5458.1641

S. Gazzarrini, J. L. Etten, D. Difrancesco, G. Thiel, and A. Moroni, Voltage-Dependence of Virus-encoded Miniature K+ Channel Kcv, The Journal of Membrane Biology, vol.187, issue.1, pp.15-25, 2002.
DOI : 10.1007/s00232-001-0147-5

A. Moroni, C. Viscomi, V. Sangiorgio, C. Pagliuca, T. Meckel et al., channel Kcv, FEBS Letters, vol.30, issue.1-3, pp.65-69, 2002.
DOI : 10.1016/S0014-5793(02)03397-5

S. Gazzarrini, M. Kang, A. Abenavoli, G. Romani, C. Olivari et al., Chlorella virus ATCV-1 encodes a functional potassium channel of 82 amino acids, Biochemical Journal, vol.7, issue.2, pp.420-295, 2009.
DOI : 10.1111/j.1469-7793.2001.t01-1-00497.x

S. M. Mcwilliam, K. Kongsuwan, J. A. Cowley, K. A. Byrne, and P. J. Walker, Genome organization and transcription strategy in the complex GNS-L intergenic region of bovine ephemeral fever rhabdovirus., Journal of General Virology, vol.78, issue.6, pp.1309-1317, 1997.
DOI : 10.1099/0022-1317-78-6-1309

L. Wilson, C. Mckinlay, P. Gage, and G. Ewart, SARS coronavirus E protein forms cation-selective ion channels, Virology, vol.330, issue.1, pp.322-331, 2004.
DOI : 10.1016/j.virol.2004.09.033

URL : http://doi.org/10.1016/j.virol.2004.09.033

K. Parthasarathy, L. Ng, X. Lin, D. X. Liu, K. Pervushin et al., Structural Flexibility of the Pentameric SARS Coronavirus Envelope Protein Ion Channel, Biophysical Journal, vol.95, issue.6, pp.95-134, 2008.
DOI : 10.1529/biophysj.108.133041

Y. Ye and B. G. Hogue, Role of the Coronavirus E Viroporin Protein Transmembrane Domain in Virus Assembly, Journal of Virology, vol.81, issue.7, pp.3597-3607, 2007.
DOI : 10.1128/JVI.01472-06

L. Wilson, P. Gage, and G. Ewart, Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication, Virology, vol.353, issue.2, pp.294-306, 2006.
DOI : 10.1016/j.virol.2006.05.028

URL : http://doi.org/10.1016/j.virol.2006.05.028

W. Lu, B. J. Zheng, K. Xu, W. Schwarz, L. Du et al., Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release, Proceedings of the National Academy of Sciences, vol.103, issue.33, pp.12540-12545, 2006.
DOI : 10.1073/pnas.0605402103

URL : https://hal.archives-ouvertes.fr/pasteur-00619943

H. X. Wang, C. E. Wang, Y. H. Wang, Y. C. Gan, J. T. Li et al., Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients, J. Mol. Biol, pp.341-271, 2004.

S. Gazzarrini, M. Severino, M. Lombardi, M. Morandi, D. Difrancesco et al., The viral potassium channel Kcv: structural and functional features, FEBS Letters, vol.18, issue.1, pp.12-16, 2003.
DOI : 10.1016/S0014-5793(03)00777-4

B. Hertel, S. Tayefeh, T. Kloss, J. Hewing, M. Gebhardt et al., Salt bridges in the miniature viral channel Kcv are important for function, European Biophysics Journal, vol.96, issue.7, pp.39-1057, 2010.
DOI : 10.1007/s00249-009-0451-z

M. Kang, A. Moroni, S. Gazzarrini, D. Difrancesco, G. Thiel et al., Small potassium ion channel proteins encoded by chlorella viruses, Proceedings of the National Academy of Sciences, vol.101, issue.15, pp.5318-5324, 2004.
DOI : 10.1073/pnas.0307824100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC397378

M. Kang, A. Moroni, S. Gazzarrini, and J. L. Van-etten, Are chlorella viruses a rich source of ion channel genes?, FEBS Letters, vol.16, issue.1, pp.2-6, 2003.
DOI : 10.1016/S0014-5793(03)00775-0

M. Neupartl, C. Meyer, I. Woll, F. Frohns, M. Kang et al., Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection, Virology, vol.372, issue.2, pp.340-348, 2008.
DOI : 10.1016/j.virol.2007.10.024

T. E. Chase, J. A. Nelson, D. E. Burbank, and J. L. Van-etten, Mutual Exclusion Occurs in a Chlorella-like Green Alga Inoculated with Two Viruses, Journal of General Virology, vol.70, issue.7, pp.1829-1836, 1989.
DOI : 10.1099/0022-1317-70-7-1829

T. Greiner, F. Frohns, M. Kang, J. L. Van-etten, A. Kasmann et al., Chlorella viruses prevent multiple infections by depolarizing the host membrane, Journal of General Virology, vol.90, issue.8, pp.90-2033, 2009.
DOI : 10.1099/vir.0.010629-0

R. A. Lamb, S. L. Zebedee, and C. D. Richardson, Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface, Cell, vol.40, issue.3, pp.627-633, 1985.
DOI : 10.1016/0092-8674(85)90211-9

R. J. Sugrue and A. J. Hay, Structural characteristics of the M2 protein of influenza a viruses: Evidence that it forms a tetrameric channe, Virology, vol.180, issue.2, pp.617-624, 1991.
DOI : 10.1016/0042-6822(91)90075-M

C. Wang, R. A. Lamb, and L. H. Pinto, Direct Measurement of the Influenza A Virus M2 Protein Ion Channel Activity in Mammalian Cells, Virology, vol.205, issue.1, pp.133-140, 1994.
DOI : 10.1006/viro.1994.1628

I. V. Chizhmakov, F. M. Geraghty, D. C. Ogden, A. Hayhurst, M. Antoniou et al., Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukaemia cells., The Journal of Physiology, vol.494, issue.2, pp.494-329, 1996.
DOI : 10.1113/jphysiol.1996.sp021495

C. Schroeder, C. M. Ford, S. A. Wharton, and A. J. Hay, Functional reconstitution in lipid vesicles of influenza virus M2 protein expressed by baculovirus: evidence for proton transfer activity, Journal of General Virology, vol.75, issue.12, pp.3477-3484, 1994.
DOI : 10.1099/0022-1317-75-12-3477

J. Hu, R. Fu, K. Nishimura, L. Zhang, H. X. Zhou et al., Histidines, heart of the hydrogen ion channel from influenza A virus: Toward an understanding of conductance and proton selectivity, Proceedings of the National Academy of Sciences, vol.103, issue.18, pp.6865-6870, 2006.
DOI : 10.1073/pnas.0601944103

Y. Tang, F. Zaitseva, R. A. Lamb, and L. H. Pinto, The Gate of the Influenza Virus M2 Proton Channel Is Formed by a Single Tryptophan Residue, Journal of Biological Chemistry, vol.277, issue.42, pp.277-39880, 2002.
DOI : 10.1074/jbc.M206582200

J. A. Mould, J. E. Drury, S. M. Frings, U. B. Kaupp, A. Pekosz et al., Permeation and Activation of the M2 Ion Channel of Influenza A Virus, Journal of Biological Chemistry, vol.275, issue.40, pp.275-31038, 2000.
DOI : 10.1074/jbc.M003663200

T. Sakaguchi, G. P. Leser, and R. A. Lamb, The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus, The Journal of Cell Biology, vol.133, issue.4, pp.733-747, 1996.
DOI : 10.1083/jcb.133.4.733

J. R. Henkel and O. A. Weisz, Influenza Virus M2 Protein Slows Traffic along the Secretory Pathway. pH PERTURBATION OF ACIDIFIED COMPARTMENTS AFFECTS EARLY GOLGI TRANSPORT STEPS, Journal of Biological Chemistry, vol.273, issue.11, pp.273-6518, 1998.
DOI : 10.1074/jbc.273.11.6518

M. F. Mccown and A. Pekosz, Distinct Domains of the Influenza A Virus M2 Protein Cytoplasmic Tail Mediate Binding to the M1 Protein and Facilitate Infectious Virus Production, Journal of Virology, vol.80, issue.16, pp.8178-8189, 2006.
DOI : 10.1128/JVI.00627-06

P. Zou, F. Wu, L. Lu, J. H. Huang, and Y. H. Chen, The cytoplasmic domain of influenza M2 protein interacts with caveolin-1, Archives of Biochemistry and Biophysics, vol.486, issue.2, pp.486-150, 2009.
DOI : 10.1016/j.abb.2009.02.001

M. Murata, J. Peranen, R. Schreiner, F. Wieland, T. V. Kurzchalia et al., VIP21/caveolin is a cholesterol-binding protein., Proceedings of the National Academy of Sciences, vol.92, issue.22, pp.92-10339, 1995.
DOI : 10.1073/pnas.92.22.10339

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC40792/pdf

K. Strebel, T. Klimkait, and M. A. Martin, A novel gene of HIV-1, vpu, and its 16-kilodalton product, Science, vol.241, issue.4870, pp.1221-1223, 1988.
DOI : 10.1126/science.3261888

E. A. Cohen, E. F. Terwilliger, J. G. Sodroski, and W. A. Haseltine, Identification of a protein encoded by the vpu gene of HIV-1, Nature, vol.334, issue.6182, pp.532-534, 1988.
DOI : 10.1038/334532a0

U. Schubert, S. Bour, A. V. Ferrer-montiel, M. Montal, F. Maldarell et al., The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains, J. Virol, pp.70-809, 1996.

U. Schubert, P. Henklein, B. Boldyreff, E. Wingender, K. Strebel et al., The human immunodeficiency virus type 1 encoded Vpu protein is phosphorylated by casein kinase-2 (CK-2) at positions Ser52 and Ser56 within a predicted alphahelix-turn-alpha-helix-motif, J. Mol. Biol, pp.236-252, 1994.

E. F. Terwilliger, E. A. Cohen, Y. C. Lu, J. G. Sodroski, and W. A. Haseltine, Functional role of human immunodeficiency virus type 1 vpu., Proceedings of the National Academy of Sciences, vol.86, issue.13, pp.86-5163, 1989.
DOI : 10.1073/pnas.86.13.5163

T. Klimkait, K. Strebel, M. D. Hoggan, M. A. Martin, and J. M. Orenstein, The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release, J. Virol, pp.64-621, 1990.

R. L. Willey, F. Maldarelli, M. A. Martin, and K. Strebel, Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4, J. Virol, pp.66-7193, 1992.

X. J. Yao, H. Göttlinger, W. A. Haseltine, and E. A. Cohen, Envelope glycoprotein and CD4 independence of vpu-facilitated human immunodeficiency virus type 1 capsid export, J. Virol, pp.66-5119, 1992.

M. E. González and L. Carrasco, Human Immunodeficiency Virus Type 1 VPU Protein Affects Sindbis Virus Glycoprotein Processing and Enhances Membrane Permeabilization, Virology, vol.279, issue.1, pp.201-209, 2001.
DOI : 10.1006/viro.2000.0708

F. Margottin, S. P. Bour, H. Durand, L. Selig, S. Benichou et al., A Novel Human WD Protein, h-??TrCP, that Interacts with HIV-1 Vpu Connects CD4 to the ER Degradation Pathway through an F-Box Motif, Molecular Cell, vol.1, issue.4, pp.565-574, 1998.
DOI : 10.1016/S1097-2765(00)80056-8

U. Schubert, L. C. Antón, I. Bacík, J. H. Cox, S. Bour et al., CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway, J. Virol, pp.72-2280, 1998.

K. Hsu, J. Seharaseyon, P. Dong, S. Bour, and E. Marbán, Mutual Functional Destruction of HIV-1 Vpu and Host TASK-1 Channel, Molecular Cell, vol.14, issue.2, pp.259-267, 2004.
DOI : 10.1016/S1097-2765(04)00183-2

V. Varthakavi, R. M. Smith, S. P. Bour, K. Strebel, and P. Spearman, Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production, Proceedings of the National Academy of Sciences, vol.100, issue.25, pp.15154-15159, 2003.
DOI : 10.1073/pnas.2433165100

S. J. Neil, V. Sandrin, W. I. Sundquist, and P. Bieniasz, An Interferon-??-Induced Tethering Mechanism Inhibits HIV-1 and Ebola Virus Particle Release but Is Counteracted by the HIV-1 Vpu Protein, Cell Host & Microbe, vol.2, issue.3, pp.193-203, 2007.
DOI : 10.1016/j.chom.2007.08.001

S. J. Neil, T. Zang, and P. D. Bieniasz, Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu, Nature, vol.2, issue.7177, pp.425-430, 2008.
DOI : 10.1038/nature06553

T. Sakuma, T. Noda, S. Urata, Y. Kawaoka, and J. Yasuda, Inhibition of Lassa and Marburg Virus Production by Tetherin, Journal of Virology, vol.83, issue.5, pp.2382-2385, 2009.
DOI : 10.1128/JVI.01607-08

F. Zhang, S. J. Wilson, W. C. Landford, B. Virgen, D. Gregory et al., Nef Proteins from Simian Immunodeficiency Viruses Are Tetherin Antagonists, Cell Host & Microbe, vol.6, issue.1, pp.54-67, 2009.
DOI : 10.1016/j.chom.2009.05.008

URL : http://doi.org/10.1016/j.chom.2009.05.008

P. Feng, J. Park, B. S. Lee, S. H. Lee, R. J. Bram et al., Kaposi's Sarcoma-Associated Herpesvirus Mitochondrial K7 Protein Targets a Cellular Calcium-Modulating Cyclophilin Ligand To Modulate Intracellular Calcium Concentration and Inhibit Apoptosis, Journal of Virology, vol.76, issue.22, pp.76-11491, 2002.
DOI : 10.1128/JVI.76.22.11491-11504.2002

D. Perez-caballero, T. Zang, A. Ebrahimi, M. W. Mcnatt, D. A. Gregory et al., Tetherin Inhibits HIV-1 Release by Directly Tethering Virions to Cells, Cell, vol.139, issue.3, pp.499-511, 2009.
DOI : 10.1016/j.cell.2009.08.039

R. S. Mitchell, C. Katsura, M. A. Skasko, K. Fitzpatrick, D. Lau et al., Vpu Antagonizes BST-2???Mediated Restriction of HIV-1 Release via ??-TrCP and Endo-Lysosomal Trafficking, PLoS Pathogens, vol.10, issue.5, p.1000450, 2009.
DOI : 10.1371/journal.ppat.1000450.s003

J. L. Douglas, K. Viswanathan, M. N. Mccarroll, J. K. Gustin, K. Früh et al., Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/ tetherin via a {beta}TrCP-dependent mechanism, J. Virol, pp.83-7931, 2009.

C. Goffinet, I. Allespach, S. Homann, H. M. Tervo, A. Habermann et al., HIV-1 Antagonism of CD317 Is Species Specific and Involves Vpu-Mediated Proteasomal Degradation of the Restriction Factor, Cell Host & Microbe, vol.5, issue.3, pp.285-297, 2009.
DOI : 10.1016/j.chom.2009.01.009

V. Varthakavi, E. Heimann-nichols, R. M. Smith, R. J. Sun, S. Bram et al., Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu, Nat. Med, pp.14-641, 2008.

C. Lin, B. D. Lindenbach, B. M. Prágai, D. W. Mccourt, and C. M. Rice, Processing in the hepatitis C virus E2-NS2 region: identification of p7 and two distinct E2-specific products with different C termini, J. Virol, pp.68-5063, 1994.

S. Carrère-kremer, C. Montpellier-pala, L. Cocquerel, C. Wychowski, F. Penin et al., Subcellular Localization and Topology of the p7 Polypeptide of Hepatitis C Virus, Journal of Virology, vol.76, issue.8, pp.76-3720, 2002.
DOI : 10.1128/JVI.76.8.3720-3730.2002

S. Griffin, D. Clarke, C. Mccormick, D. Rowlands, and M. Harris, Signal Peptide Cleavage and Internal Targeting Signals Direct the Hepatitis C Virus p7 Protein to Distinct Intracellular Membranes, Journal of Virology, vol.79, issue.24, pp.79-15525, 2005.
DOI : 10.1128/JVI.79.24.15525-15536.2005

A. Sakai, M. S. Claire, K. Faulk, S. Govindarajan, S. U. Emerson et al., The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences, Proceedings of the National Academy of Sciences, vol.100, issue.20, pp.11646-11651, 2003.
DOI : 10.1073/pnas.1834545100

E. Steinmann, F. Penin, S. Kallis, A. H. Patel, R. Bartenschlager et al., Hepatitis C Virus p7 Protein Is Crucial for Assembly and Release of Infectious Virions, PLoS Pathogens, vol.22, issue.7, 2007.
DOI : 10.1371/journal.ppat.0030103.sg001

C. Brohm, E. Steinmann, M. Friesland, I. C. Lorenz, A. H. Patel et al., Characterization of Determinants Important for Hepatitis C Virus p7 Function in Morphogenesis by Using trans-Complementation, Journal of Virology, vol.83, issue.22, pp.83-11682, 2009.
DOI : 10.1128/JVI.00691-09

A. S. De-jong, F. De-mattia, M. M. Van-dommelen, K. Lanke, W. J. Melchers et al., Functional Analysis of Picornavirus 2B Proteins: Effects on Calcium Homeostasis and Intracellular Protein Trafficking, Journal of Virology, vol.82, issue.7, pp.82-3782, 2008.
DOI : 10.1128/JVI.02076-07

A. Cuconati, W. Xiang, F. Lahser, T. Pfister, and E. Wimmer, A protein linkage map of the P2 nonstructural proteins of poliovirus, J. Virol, pp.72-1297, 1998.

A. S. De-jong, I. W. Schrama, P. H. Willems, J. M. Galama, W. J. Melchers et al., Multimerization reactions of coxsackievirus proteins 2B, 2C and 2BC: a mammalian two-hybrid analysis, Journal of General Virology, vol.83, issue.4, pp.83-783, 2002.
DOI : 10.1099/0022-1317-83-4-783

F. J. Van-kuppeveld, W. J. Melchers, P. H. Willems, and T. W. Gadella, Homomultimerization of the Coxsackievirus 2B Protein in Living Cells Visualized by Fluorescence Resonance Energy Transfer Microscopy, Journal of Virology, vol.76, issue.18, pp.76-9446, 2002.
DOI : 10.1128/JVI.76.18.9446-9456.2002

R. Aldabe, A. Barco, and L. Carrasco, Membrane permeabilization by poliovirus proteins 2B and 2BC, J. Biol. Chem, vol.271, pp.23134-23137, 1996.

I. V. Sandoval and L. Carrasco, Poliovirus infection and expression of the poliovirus protein 2B provoke the disassembly of the Golgi complex, the organelle target for the antipoliovirus drug Ro-090179, J. Virol, pp.71-4679, 1997.

A. Agirre, A. Barco, L. Carrasco, and J. L. Nieva, Viroporin-mediated Membrane Permeabilization: PORE FORMATION BY NONSTRUCTURAL POLIOVIRUS 2B PROTEIN, Journal of Biological Chemistry, vol.277, issue.43, pp.40434-40441, 2002.
DOI : 10.1074/jbc.M205393200

M. Campanella, A. S. De-jong, K. W. Lanke, W. J. Melchers, P. H. Willems et al., The Coxsackievirus 2B Protein Suppresses Apoptotic Host Cell Responses by Manipulating Intracellular Ca2+ Homeostasis, Journal of Biological Chemistry, vol.279, issue.18, pp.279-18440, 2004.
DOI : 10.1074/jbc.M309494200

V. Madan, J. Garcia-mde, M. A. Sanz, and L. Carrasco, Viroporin activity of murine hepatitis virus E protein, FEBS Letters, vol.14, issue.17, pp.3607-3612, 2005.
DOI : 10.1016/j.febslet.2005.05.046

Y. Liao, Q. Yuan, J. Torres, J. P. Tam, and D. X. Liu, Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein, Virology, vol.349, issue.2, pp.264-275, 2006.
DOI : 10.1016/j.virol.2006.01.028

Y. Liao, J. Lescar, J. P. Tam, and D. X. Liu, Expression of SARS-coronavirus envelope protein in Escherichia coli cells alters membrane permeability, Biochemical and Biophysical Research Communications, vol.325, issue.1, pp.325-374, 2004.
DOI : 10.1016/j.bbrc.2004.10.050

K. Pervushin, E. Tan, K. Parthasarathy, X. Lin, F. L. Jiang et al., Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel, PLoS Pathogens, vol.91, issue.7, p.1000511, 2009.
DOI : 10.1371/journal.ppat.1000511.s012

J. Torres, U. Maheswari, K. Parthasarathy, L. Ng, D. X. Liu et al., Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein, Protein Science, vol.7, issue.9, pp.2065-2071, 2007.
DOI : 10.1110/ps.062730007

L. Kuo and P. S. Masters, The Small Envelope Protein E Is Not Essential for Murine Coronavirus Replication, Journal of Virology, vol.77, issue.8, pp.4597-4608, 2003.
DOI : 10.1128/JVI.77.8.4597-4608.2003

E. C. Bos, W. Luytjes, H. V. Van-der-meulen, H. K. Koerten, and W. J. Spaan, The Production of Recombinant Infectious DI-Particles of a Murine Coronavirus in the Absence of Helper Virus, Virology, vol.218, issue.1, pp.52-60, 1996.
DOI : 10.1006/viro.1996.0165

H. Vennema, G. J. Godeke, J. W. Rossen, W. F. Voorhout, M. C. Horzinek et al., Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes, EMBO J, vol.15, pp.2020-2028, 1996.

F. Fischer, C. F. Stegen, P. S. Masters, and W. A. Samsonoff, Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly, J. Virol, pp.72-7885, 1998.

Q. C. Cai, Q. W. Jiang, G. M. Zhao, Q. Guo, G. W. Cao et al., Putative caveolinbinding sites in SARS-CoV proteins, Acta Pharmacol. Sin, pp.24-1051, 2003.

K. Padhan, C. Tanwar, A. Hussain, P. Y. Hui, M. Y. Lee et al., Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin, Journal of General Virology, vol.88, issue.11, pp.88-3067, 2007.
DOI : 10.1099/vir.0.82856-0

URL : http://hub.hku.hk/bitstream/10722/125145/1/Content.pdf

J. S. Oxford and A. Galbraith, Antiviral activity of amantadine: a review of laboratory and clinical data, Pharmacology & Therapeutics, vol.11, issue.1, pp.181-262, 1980.
DOI : 10.1016/0163-7258(80)90072-8

A. J. Hay, A. J. Wolstenholme, J. J. Skehel, and M. H. Smith, The molecular basis of the specific anti-influenza action of amantadine, EMBO J, vol.4, pp.3021-3024, 1985.

A. P. Kendal and H. D. Klenk, Amantadine inhibits an early, M 2 protein-dependent event in the replication cycle of avian influenza (H 7) viruses, Archives of Virology, vol.3, issue.39, pp.265-273, 1991.
DOI : 10.1007/BF01310675

J. R. Schnell and J. J. Chou, Structure and mechanism of the M2 proton channel of influenza A virus, Nature, vol.45, issue.7178, pp.591-595, 2008.
DOI : 10.1038/nature06531

A. L. Stouffer, R. Acharya, D. Salom, A. S. Levine, L. Di-costanzo et al., Structural basis for the function and inhibition of an influenza virus proton channel, Nature, vol.20, issue.7178, pp.596-599, 2008.
DOI : 10.1038/nature06528

G. D. Ewart, K. Mills, G. B. Cox, and P. W. Gage, Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu, European Biophysics Journal, vol.31, issue.1, pp.31-57, 2002.
DOI : 10.1007/s002490100177

A. Premkumar, L. Wilson, G. D. Ewart, and P. W. Gage, Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride, FEBS Letters, vol.45, issue.1-3, pp.99-103, 2004.
DOI : 10.1016/S0014-5793(03)01453-4

S. Griffin, C. Stgelais, A. M. Owsianka, A. H. Patel, D. Rowlands et al., Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel, Hepatology, vol.47, issue.2 Suppl 1, pp.1779-1790, 2008.
DOI : 10.1002/hep.22555

C. Stgelais, T. J. Tuthill, D. S. Clarke, D. J. Rowlands, M. Harris et al., Inhibition of hepatitis C virus p7 membrane channels in a liposome-based assay system, Antiviral Research, vol.76, issue.1, pp.76-124, 2007.
DOI : 10.1016/j.antiviral.2007.05.001

C. Stgelais, T. L. Foster, M. Verow, E. Atkins, C. W. Fishwick et al., Determinants of Hepatitis C Virus p7 Ion Channel Function and Drug Sensitivity Identified In Vitro, Journal of Virology, vol.83, issue.16, pp.83-7970, 2009.
DOI : 10.1128/JVI.00521-09