M. Uldry, M. Ibberson, M. Hosokawa, and B. Thorens, GLUT2 is a high affinity glucosamine transporter, FEBS Letters, vol.37, issue.1-3, pp.199-203, 2002.
DOI : 10.1016/S0014-5793(02)03058-2

R. Traxinger and S. Marshall, Coordinated regulation of glutamine:fructose-6- phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation, J Biol Chem, vol.266, pp.10148-10154, 1991.

J. Tang, J. Neidigh, R. Cooksey, and D. Mcclain, Transgenic mice with increased hexosamine flux specifically targeted to beta-cells exhibit hyperinsulinemia and peripheral insulin resistance, Diabetes, vol.49, issue.9, pp.1492-1499, 2000.
DOI : 10.2337/diabetes.49.9.1492

C. Bassleer, L. Rovati, and P. Franchimont, Stimulation of proteoglycan production by glucosamine sulfate in chondrocytes isolated from human osteoarthritic articular cartilage in vitro, Osteoarthritis and Cartilage, vol.6, issue.6, pp.427-434, 1998.
DOI : 10.1053/joca.1998.0146

J. Gouze, A. Bianchi, P. Becuwe, M. Dauca, P. Netter et al., Glucosamine modulates IL-1-induced activation of rat chondrocytes at a receptor level, and by inhibiting the NF-??B pathway, FEBS Letters, vol.264, issue.3, pp.166-170, 2002.
DOI : 10.1016/S0014-5793(01)03255-0

J. Gouze, E. Gouze, M. Popp, M. Bush, E. Dacanay et al., Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta, Arthritis Research & Therapy, vol.8, issue.6, p.173, 2006.
DOI : 10.1186/ar2082

R. Largo, M. Alvarez-soria, I. Diez-ortego, E. Calvo, O. Sanchez-pernaute et al., Glucosamine inhibits IL-1??-induced NF??B activation in human osteoarthritic chondrocytes, Osteoarthritis and Cartilage, vol.11, issue.4, pp.290-298, 2003.
DOI : 10.1016/S1063-4584(03)00028-1

Y. Tamai, K. Miyatake, Y. Okamoto, Y. Takamori, H. Sakamoto et al., Enhanced healing of cartilaginous injuries by glucosamine hydrochloride, Carbohydrate Polymers, vol.48, issue.4, pp.369-378, 2002.
DOI : 10.1016/S0144-8617(01)00281-8

P. Chan, J. Caron, G. Rosa, and M. Orth, Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants. Osteoarthritis Cartilage, pp.387-394, 2005.

C. Meininger, K. Kelly, H. Li, T. Haynes, and G. Wu, Glucosamine Inhibits Inducible Nitric Oxide Synthesis, Biochemical and Biophysical Research Communications, vol.279, issue.1, pp.234-239, 2000.
DOI : 10.1006/bbrc.2000.3912

J. Hua, K. Sakamoto, and I. Nagaoka, Inhibitory actions of glucosamine, a therapeutic agent for osteoarthritis, on the functions of neutrophils, J Leukoc Biol, vol.71, pp.632-640, 2002.

L. Ma, W. Rudert, J. Harnaha, M. Wright, J. Machen et al., Immunosuppressive Effects of Glucosamine, Journal of Biological Chemistry, vol.277, issue.42, pp.39343-39349, 2002.
DOI : 10.1074/jbc.M204924200

J. Anderson, R. Nicolosi, and J. Borzelleca, Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy, Food and Chemical Toxicology, vol.43, issue.2, pp.187-201, 2005.
DOI : 10.1016/j.fct.2004.11.006

I. Setnikar and L. Rovati, Absorption, distribution, metabolism and excretion of glucosamine sulfate. A review, Arzneimittelforschung, vol.51, pp.699-725, 2001.

I. Setnikar, C. Giacchetti, and G. Zanolo, Pharmacokinetics of glucosamine in the dog and in man, Arzneimittelforschung, vol.36, pp.729-735, 1986.

H. Muller-fassbender, G. Bach, W. Haase, L. Rovati, and I. Setnikar, Glucosamine sulfate compared to ibuprofen in osteoarthritis of the knee, Osteoarthritis and Cartilage, vol.2, issue.1, pp.61-69, 1994.
DOI : 10.1016/S1063-4584(05)80007-X

J. Reginster, R. Deroisy, L. Rovati, R. Lee, E. Lejeune et al., Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial, The Lancet, vol.357, issue.9252, pp.251-256, 2001.
DOI : 10.1016/S0140-6736(00)03610-2

T. Towheed, L. Maxwell, T. Anastassiades, B. Shea, J. Houpt et al., Glucosamine therapy for treating osteoarthritis, Cochrane Database Syst Rev, p.2946, 2005.
DOI : 10.1002/14651858.cd002946.pub2

F. Richy, O. Bruyere, O. Ethgen, M. Cucherat, Y. Henrotin et al., Structural and Symptomatic Efficacy of Glucosamine and Chondroitin in Knee Osteoarthritis, Archives of Internal Medicine, vol.163, issue.13, pp.1514-1522, 2003.
DOI : 10.1001/archinte.163.13.1514

URL : https://hal.archives-ouvertes.fr/hal-00427347

D. Clegg, D. Reda, C. Harris, M. Klein, O. Dell et al., Glucosamine, Chondroitin Sulfate, and the Two in Combination for Painful Knee Osteoarthritis, New England Journal of Medicine, vol.354, issue.8, pp.795-808, 2006.
DOI : 10.1056/NEJMoa052771

R. Rozendaal, B. Koes, G. Van-osch, E. Uitterlinden, E. Garling et al., Effect of Glucosamine Sulfate on Hip Osteoarthritis, Annals of Internal Medicine, vol.148, issue.4, pp.268-277, 2008.
DOI : 10.7326/0003-4819-148-4-200802190-00005

F. Van-de-loo, O. Arntz, F. Van-enckevort, P. Van-lent, . Van-den et al., Reduced cartilage proteoglycan loss during zymosan-induced gonarthritis in NOS2-deficient mice and in anti-interleukin-1-treated wild-type mice with unabated joint inflammation, Arthritis & Rheumatism, vol.38, issue.4, pp.634-646, 1998.
DOI : 10.1002/1529-0131(199804)41:4<634::AID-ART10>3.0.CO;2-1

K. Pritzker, S. Gay, S. Jimenez, K. Ostergaard, J. Pelletier et al., Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage, pp.13-29, 2006.

O. Bruyere and J. Reginster, Glucosamine and Chondroitin Sulfate as Therapeutic Agents for Knee and Hip Osteoarthritis, Drugs & Aging, vol.47, issue.1, pp.573-580, 2007.
DOI : 10.2165/00002512-200724070-00005

URL : http://orbi.ulg.ac.be/jspui/handle/2268/19999

J. Delafuente, GLUCOSAMINE IN THE TREATMENT OF OSTEOARTHRITIS, Rheumatic Disease Clinics of North America, vol.26, issue.1, pp.1-11, 2000.
DOI : 10.1016/S0889-857X(05)70116-2

D. Uebelhart, Clinical review of chondroitin sulfate in osteoarthritis. Osteoarthritis Cartilage, pp.19-21, 2008.

D. Ambrosio, E. Casa, B. Bompani, R. Scali, G. Scali et al., Glucosamine sulphate: a controlled clinical investigation in arthrosis, Pharmatherapeutica, vol.2, pp.504-508, 1981.

K. Pavelka, Symptomatic treatment of osteoarthritis: paracetamol or NSAIDs?, International Journal of Clinical Practice, vol.8, issue.6, pp.5-12, 2004.
DOI : 10.1111/j.1742-1241.2004.005_b.x

S. Vlad, M. Lavalley, T. Mcalindon, and D. Felson, Glucosamine for pain in osteoarthritis: why do trial results differ? Arthritis Rheum, pp.2267-2277, 2007.

S. Hwang, J. Shin, J. Hwang, S. Kim, J. Shin et al., Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury, Glia, vol.175, issue.Pt 5, pp.1881-1892, 2010.
DOI : 10.1002/glia.21058

J. Fernandes, J. Martel-pelletier, and J. Pelletier, The role of cytokines in osteoarthritis pathophysiology, Biorheology, vol.39, pp.237-246, 2002.

S. Goldring and M. Goldring, The Role of Cytokines in Cartilage Matrix Degeneration in Osteoarthritis, Clinical Orthopaedics and Related Research, vol.427, pp.27-36, 2004.
DOI : 10.1097/01.blo.0000144854.66565.8f

M. Asagiri and H. Takayanagi, The molecular understanding of osteoclast differentiation, Bone, vol.40, issue.2, pp.251-264, 2007.
DOI : 10.1016/j.bone.2006.09.023

S. Mohamed, E. Sugiyama, K. Shinoda, H. Taki, H. Hounoki et al., Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells, Bone, vol.41, issue.4, pp.592-602, 2007.
DOI : 10.1016/j.bone.2007.05.016

F. Yoshitake, S. Itoh, H. Narita, K. Ishihara, and S. Ebisu, Interleukin-6 Directly Inhibits Osteoclast Differentiation by Suppressing Receptor Activator of NF-??B Signaling Pathways, Journal of Biological Chemistry, vol.283, issue.17, pp.11535-11540, 2008.
DOI : 10.1074/jbc.M607999200

P. Palmqvist, E. Persson, H. Conaway, and U. Lerner, IL-6, Leukemia Inhibitory Factor, and Oncostatin M Stimulate Bone Resorption and Regulate the Expression of Receptor Activator of NF-??B Ligand, Osteoprotegerin, and Receptor Activator of NF-??B in Mouse Calvariae, The Journal of Immunology, vol.169, issue.6, pp.3353-3362, 2002.
DOI : 10.4049/jimmunol.169.6.3353

S. Kotake, K. Sato, K. Kim, N. Takahashi, N. Udagawa et al., Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation, Journal of Bone and Mineral Research, vol.152, issue.suppl, pp.88-95, 1996.
DOI : 10.1002/jbmr.5650110113

M. Hashizume, N. Hayakawa, and M. Mihara, IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-?? and IL-17, Rheumatology, vol.47, issue.11, pp.1635-1640, 2008.
DOI : 10.1093/rheumatology/ken363

D. Lacey, E. Timms, H. Tan, M. Kelley, C. Dunstan et al., Osteoprotegerin Ligand Is a Cytokine that Regulates Osteoclast Differentiation and Activation, Cell, vol.93, issue.2, pp.165-176, 1998.
DOI : 10.1016/S0092-8674(00)81569-X

A. Hikita, I. Yana, H. Wakeyama, M. Nakamura, Y. Kadono et al., Negative Regulation of Osteoclastogenesis by Ectodomain Shedding of Receptor Activator of NF-??B Ligand, Journal of Biological Chemistry, vol.281, issue.48, pp.36846-36855, 2006.
DOI : 10.1074/jbc.M606656200

T. Ikeda, M. Kasai, M. Utsuyama, and K. Hirokawa, Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus, Endocrinology, vol.142, pp.1419-1426, 2001.

Y. Kong, U. Feige, I. Sarosi, B. Bolon, A. Tafuri et al., Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand, Nature, vol.402, pp.304-309, 1999.

S. Kotake, N. Udagawa, M. Hakoda, M. Mogi, K. Yano et al., Activated human T cells directly induce osteoclastogenesis from human monocytes: Possible role of T cells in bone destruction in rheumatoid arthritis patients, Arthritis & Rheumatism, vol.247, issue.5, pp.1003-1012, 2001.
DOI : 10.1002/1529-0131(200105)44:5<1003::AID-ANR179>3.0.CO;2-#

T. Boegard, O. Rudling, I. Petersson, and K. Jonsson, Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the patellofemoral joint, Annals of the Rheumatic Diseases, vol.57, issue.7, pp.395-400, 1998.
DOI : 10.1136/ard.57.7.395

P. Van-der-kraan, . Van-den, and W. Berg, Osteophytes: relevance and biology. Osteoarthritis Cartilage, pp.237-244, 2007.

H. Van-beuningen, H. Glansbeek, P. Van-der-kraan, . Van-den, and W. Berg, Differential effects of local application of BMP-2 or TGF-??1 on both articular cartilage composition and osteophyte formation, Osteoarthritis and Cartilage, vol.6, issue.5, pp.306-317, 1998.
DOI : 10.1053/joca.1998.0129

B. Davidson, E. Vitters, E. Van-beuningen, H. Van-de-loo, F. Van-den-berg et al., Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor ??-induced osteophytes: Limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation, Arthritis & Rheumatism, vol.52, issue.12, pp.4065-4073, 2007.
DOI : 10.1002/art.23034

M. Daans, R. Lories, and F. Luyten, Dynamic activation of bone morphogenetic protein signaling in collagen-induced arthritis supports their role in joint homeostasis and disease, Arthritis Research & Therapy, vol.10, issue.5, p.115, 2008.
DOI : 10.1186/ar2518

B. Davidson, E. Vitters, E. Van-der-kraan, P. Van-den, and W. Berg, Expression of transforming growth factor-?? (TGF??) and the TGF?? signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation, Annals of the Rheumatic Diseases, vol.65, issue.11, pp.1414-1421, 2006.
DOI : 10.1136/ard.2005.045971

D. Glass, P. Bialek, J. Ahn, M. Starbuck, M. Patel et al., Canonical Wnt Signaling in Differentiated Osteoblasts Controls Osteoclast Differentiation, Developmental Cell, vol.8, issue.5, pp.751-764, 2005.
DOI : 10.1016/j.devcel.2005.02.017

V. Krishnan, H. Bryant, and O. Macdougald, Regulation of bone mass by Wnt signaling, Journal of Clinical Investigation, vol.116, issue.5, pp.1202-1209, 2006.
DOI : 10.1172/JCI28551

G. Spencer, J. Utting, S. Etheridge, T. Arnett, and P. Genever, Wnt signalling in osteoblasts regulates expression of the receptor activator of NF??B ligand and inhibits osteoclastogenesis in vitro, Journal of Cell Science, vol.119, issue.7, pp.1283-1296, 2006.
DOI : 10.1242/jcs.02883

J. Li, I. Sarosi, R. Cattley, J. Pretorius, A. F. Grisanti et al., Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia, Bone, vol.39, issue.4, pp.754-766, 2006.
DOI : 10.1016/j.bone.2006.03.017

F. Morvan, K. Boulukos, P. Clément-lacroix, R. Roman, S. Suc-royer et al., Deletion of a Single Allele of the Dkk1 Gene Leads to an Increase in Bone Formation and Bone Mass, Journal of Bone and Mineral Research, vol.280, issue.6, pp.934-945, 2006.
DOI : 10.1359/jbmr.060311

D. Diarra, M. Stolina, K. Polzer, J. Zwerina, M. Ominsky et al., Dickkopf-1 is a master regulator of joint remodeling, Nature Medicine, vol.19, issue.2, pp.156-163, 2007.
DOI : 10.1038/nm1538

K. Fujita and S. Janz, Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF. Molecular Cancer, p.71, 2007.

R. Kew, C. Grimaldi, M. Furie, and H. Fleit, Human neutrophil Fc gamma RIIIB and formyl peptide receptors are functionally linked during formylmethionyl-leucyl-phenylalanine-induced chemotaxis, J Immunol, vol.149, pp.989-997, 1992.

P. Poubelle, A. Chakravarti, M. Fernandes, K. Doiron, and A. Marceau, Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils, Arthritis Research & Therapy, vol.9, issue.2, p.25, 2007.
DOI : 10.1186/ar2137

A. Chakravarti, M. Raquil, P. Tessier, and P. Poubelle, Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption, Blood, vol.114, issue.8, pp.1633-1644, 2009.
DOI : 10.1182/blood-2008-09-178301

L. Sakkas and C. Platsoucas, The role of T cells in the pathogenesis of osteoarthritis, Arthritis & Rheumatism, vol.57, issue.2, pp.409-424, 2007.
DOI : 10.1002/art.22369

Y. Takada and B. Aggarwal, Evidence that genetic deletion of the TNF receptor p60 or p80 in macrophages modulates RANKL-induced signaling, Blood, vol.104, issue.13, pp.4113-4121, 2004.
DOI : 10.1182/blood-2004-04-1607

R. Maldonado, M. Soriano, L. Perdomo, K. Sigrist, D. Irvine et al., Control of T helper cell differentiation through cytokine receptor inclusion in the immunological synapse, The Journal of Experimental Medicine, vol.157, issue.4, pp.877-892, 2009.
DOI : 10.4049/jimmunol.168.8.3825

J. Bondeson, S. Wainwright, S. Lauder, N. Amos, and C. Hughes, The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis, Arthritis Research & Therapy, vol.8, issue.6, p.187, 2006.
DOI : 10.1186/ar2099

A. Blom, P. Van-lent, A. Holthuysen, P. Van-der-kraan, R. J. Van-rooijen et al., Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage, pp.627-635, 2004.
DOI : 10.1016/j.joca.2004.03.003

URL : http://doi.org/10.1016/j.joca.2004.03.003