T. Linderbach and C. Rice, Flaviviridae: the viruses and their replication, Fields Virology, pp.1101-1152, 2007.

D. Ghosh and A. Basu, Japanese Encephalitis???A Pathological and Clinical Perspective, PLoS Neglected Tropical Diseases, vol.95, issue.2, p.437, 2009.
DOI : 10.1371/journal.pntd.0000437.g002

T. Yamanaka, K. Tsujimura, T. Kondo, W. Yasuda, and A. Okada, Isolation and Genetic Analysis of Japanese Encephalitis Virus from a Diseased Horse in Japan, Journal of Veterinary Medical Science, vol.68, issue.3, pp.293-295, 2006.
DOI : 10.1292/jvms.68.293

S. Hills and D. Phillips, Past, Present, and Future of Japanese Encephalitis, Emerging Infectious Diseases, vol.15, issue.8, p.1333, 2009.
DOI : 10.3201/eid1508.090149

T. Solomon, Flavivirus Encephalitis, New England Journal of Medicine, vol.351, issue.4, pp.370-378, 2004.
DOI : 10.1056/NEJMra030476

M. Diamond, Evasion of innate and adaptive immunity by flaviviruses, Immunology and Cell Biology, vol.111, issue.3, pp.196-206, 2003.
DOI : 10.1084/jem.20011145

L. Johnston, G. Halliday, and N. King, Langerhans Cells Migrate to Local Lymph Nodes Following Cutaneous Infection with an Arbovirus, Journal of Investigative Dermatology, vol.114, issue.3, pp.560-568, 2000.
DOI : 10.1046/j.1523-1747.2000.00904.x

W. Kwan, E. Navarro-sanchez, H. Dumortier, M. Decossas, and H. Vachon, Dermal-Type Macrophages Expressing CD209/DC-SIGN Show Inherent Resistance to Dengue Virus Growth, PLoS Neglected Tropical Diseases, vol.2, issue.10, p.311, 2008.
DOI : 10.1371/journal.pntd.0000311.s004

URL : https://hal.archives-ouvertes.fr/hal-00335138

T. Solomon and D. Vaughn, Pathogenesis and Clinical Features of Japanese Encephalitis and West Nile Virus Infections, Curr Top Microbiol Immunol, vol.267, pp.171-194, 2002.
DOI : 10.1007/978-3-642-59403-8_9

A. Aleyas, J. George, Y. Han, M. Rahman, and S. Kim, Functional Modulation of Dendritic Cells and Macrophages by Japanese Encephalitis Virus through MyD88 Adaptor Molecule-Dependent and -Independent Pathways, The Journal of Immunology, vol.183, issue.4, pp.2462-2474, 2009.
DOI : 10.4049/jimmunol.0801952

K. Yang, W. Yeh, R. Chen, H. Chuon, and H. Tsai, A model to study neurotropism and persistency of Japanese encephalitis virus infection in human neuroblastoma cells and leukocytes, Journal of General Virology, vol.85, issue.3, pp.635-642, 2004.
DOI : 10.1099/vir.0.19426-0

N. King, D. Getts, M. Getts, R. S. Shrestha, and B. , Immunopathology of flavivirus infections, Immunology and Cell Biology, vol.86, issue.1, pp.33-42, 2007.
DOI : 10.1038/sj.icb.7100012

D. Libraty, A. Nisalak, T. Endy, S. Suntayakorn, and D. Vaughn, Clinical and immunological risk factors for severe disease in Japanese encephalitis, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.96, issue.2, pp.173-178, 2002.
DOI : 10.1016/S0035-9203(02)90294-4

P. Winter, N. Dung, H. Loan, R. Kneen, and B. Wills, Proinflammatory Cytokines and Chemokines in Humans with Japanese Encephalitis, The Journal of Infectious Diseases, vol.190, issue.9, pp.1618-1626, 2004.
DOI : 10.1086/423328

D. Burke, W. Lorsomrudee, C. Leake, C. Hoke, and A. Nisalak, Fatal outcome in Japanese encephalitis, Am J Trop Med Hyg, vol.34, pp.1203-1210, 1985.

S. Biswas, S. Kar, R. Singh, D. Chakraborty, and V. Vipat, Immunomodulatory cytokines determine the outcome of Japanese encephalitis virus infection in mice, Journal of Medical Virology, vol.190, issue.2, pp.304-310, 2010.
DOI : 10.1002/jmv.21688

A. German, K. Myint, N. Mai, I. Pomeroy, and N. Phu, A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.100, issue.12, pp.1135-1145, 2006.
DOI : 10.1016/j.trstmh.2006.02.008

V. Saxena, A. Mathur, N. Krishnani, and T. Dhole, Kinetics of cytokine profile during intraperitoneal inoculation of Japanese encephalitis virus in BALB/c mice model, Microbes and Infection, vol.10, issue.10-11, pp.1210-1217, 2008.
DOI : 10.1016/j.micinf.2008.06.015

C. Chen, J. Chen, S. Chen, S. Liao, and S. Raung, Upregulation of RANTES Gene Expression in Neuroglia by Japanese Encephalitis Virus Infection, Journal of Virology, vol.78, issue.22, pp.12107-12119, 2004.
DOI : 10.1128/JVI.78.22.12107-12119.2004

K. Dutta, M. Mishra, A. Nazmi, K. Kumawat, and A. Basu, Minocycline differentially modulates macrophage mediated peripheral immune response following Japanese encephalitis virus infection, Immunobiology, vol.215, issue.11, pp.884-893, 2010.
DOI : 10.1016/j.imbio.2009.12.003

A. Ghoshal, S. Das, S. Ghosh, M. Mishra, and V. Sharma, Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis, Glia, vol.172, issue.5, pp.483-496, 2007.
DOI : 10.1002/glia.20474

T. Suzuki, A. Ogata, K. Tashiro, K. Nagashima, and M. Tamura, Japanese encephalitis virus up-regulates expression of macrophage migration inhibitory factor (MIF) mRNA in the mouse brain, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1517, issue.1, pp.100-106, 2000.
DOI : 10.1016/S0167-4781(00)00262-1

T. Mashimo, M. Lucas, D. Simon-chazottes, M. Frenkiel, and X. Montagutelli, A nonsense mutation in the gene encoding 2'-5'-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice, Proceedings of the National Academy of Sciences, vol.99, issue.17, pp.11311-11316, 2002.
DOI : 10.1073/pnas.172195399

A. Perelygin, S. Scherbik, I. Zhulin, B. Stockman, and Y. Li, Positional cloning of the murine flavivirus resistance gene, Proceedings of the National Academy of Sciences, vol.99, issue.14, pp.9322-9327, 2002.
DOI : 10.1073/pnas.142287799

S. Matsuo, K. Morita, K. Bundo-morita, and A. Igarashi, Differences in Susceptibility to Peripheral Infection with Japanese Encephalitis Virus among Inbred Strains of Mouse., Uirusu, vol.44, issue.2, pp.205-215, 1994.
DOI : 10.2222/jsv.44.205

K. Miura, N. Goto, H. Suzuki, and Y. Fujisaki, Strain difference of mouse in susceptibility to Japanese encephalitis virus infection, Jikken Dobutsu, vol.37, pp.365-373, 1988.

K. Miura, T. Onodera, A. Nishida, N. Goto, and Y. Fujisaki, A single gene controls resistance to Japanese encephalitis virus in mice, Archives of Virology, vol.65, issue.3-4, pp.261-270, 1990.
DOI : 10.1007/BF01323170

A. Brown, K. Kent, C. Bennett, and K. Bernard, Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates, Virology, vol.368, issue.2, pp.422-430, 2007.
DOI : 10.1016/j.virol.2007.06.033

A. Celada, P. Gray, E. Rinderknecht, and R. Schreiber, Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity, Journal of Experimental Medicine, vol.160, issue.1, pp.55-74, 1984.
DOI : 10.1084/jem.160.1.55

J. Coligan, Short protocols in immunology : a compendium of methods from current protocols in immunology, Hoboken NJ, 2005.

M. Lutz, N. Kukutsch, A. Ogilvie, S. Rossner, and F. Koch, An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow, Journal of Immunological Methods, vol.223, issue.1, pp.77-92, 1999.
DOI : 10.1016/S0022-1759(98)00204-X

P. Russell, A. Nisalak, P. Sukhavachana, and S. Vivona, A plaque reduction test for dengue virus neutralizing antibodies, J Immunol, vol.99, pp.285-290, 1967.

M. Suthar, D. Ma, S. Thomas, J. Lund, and N. Zhang, IPS-1 Is Essential for the Control of West Nile Virus Infection and Immunity, PLoS Pathogens, vol.81, issue.2, p.1000757, 2010.
DOI : 10.1371/journal.ppat.1000757.t001

R. Jacoby and P. Bhatt, Genetic Resistance to Lethal Flavivirus Encephalitis. I. Infection of Congenic Mice with Banzi Virus, Journal of Infectious Diseases, vol.134, issue.2, pp.158-165, 1976.
DOI : 10.1093/infdis/134.2.158

A. Mathur, M. Bharadwaj, R. Kulshreshtha, S. Rawat, and A. Jain, Immunopathological study of spleen during Japanese encephalitis virus infection in mice, Br J Exp Pathol, vol.69, pp.423-432, 1988.

A. Arjona, H. Foellmer, T. Town, L. Leng, and C. Mcdonald, Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion, Journal of Clinical Investigation, vol.117, issue.10, pp.3059-3066, 2007.
DOI : 10.1172/JCI32218

W. Glass, J. Lim, R. Cholera, A. Pletnev, and J. Gao, Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection, The Journal of Experimental Medicine, vol.15, issue.8, pp.1087-1098, 2005.
DOI : 10.1128/JVI.74.3.1415-1424.2000

K. Shirato, T. Kimura, T. Mizutani, H. Kariwa, and I. Takashima, Different chemokine expression in lethal and non-lethal murine west nile virus infection, Journal of Medical Virology, vol.68, issue.3, pp.507-513, 2004.
DOI : 10.1002/jmv.20205

J. Kalita, R. Srivastava, M. Mishra, A. Basu, and U. Misra, Cytokines and chemokines in viral encephalitis: A clinicoradiological correlation, Neuroscience Letters, vol.473, issue.1, pp.48-51, 2010.
DOI : 10.1016/j.neulet.2010.02.017

J. Dai, P. Wang, F. Bai, T. Town, and E. Fikrig, ICAM-1 Participates in the Entry of West Nile Virus into the Central Nervous System, Journal of Virology, vol.82, issue.8, pp.4164-4168, 2008.
DOI : 10.1128/JVI.02621-07

T. Wang, T. Town, L. Alexopoulou, J. Anderson, and E. Fikrig, Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis, Nature Medicine, vol.102, issue.12, pp.1366-1373, 2004.
DOI : 10.1126/science.286.5448.2352

M. Diamond, B. Shrestha, E. Mehlhop, E. Sitati, and M. Engle, Innate and Adaptive Immune Responses Determine Protection against Disseminated Infection by West Nile Encephalitis Virus, Viral Immunology, vol.16, issue.3, pp.259-278, 2003.
DOI : 10.1089/088282403322396082

S. Scherbik, J. Paranjape, B. Stockman, R. Silverman, and M. Brinton, RNase L Plays a Role in the Antiviral Response to West Nile Virus, Journal of Virology, vol.80, issue.6, pp.2987-2999, 2006.
DOI : 10.1128/JVI.80.6.2987-2999.2006

S. Scherbik, B. Stockman, and M. Brinton, Differential Expression of Interferon (IFN) Regulatory Factors and IFN-Stimulated Genes at Early Times after West Nile Virus Infection of Mouse Embryo Fibroblasts, Journal of Virology, vol.81, issue.21, pp.12005-12018, 2007.
DOI : 10.1128/JVI.01359-07

L. Ng, A. Chow, Y. Sun, D. Kwek, and P. Lim, IL-1??, IL-6, and RANTES as Biomarkers of Chikungunya Severity, PLoS ONE, vol.8, issue.6, p.4261, 2009.
DOI : 10.1371/journal.pone.0004261.s003

Y. Yang, J. Ye, X. Yang, R. Jiang, and H. Chen, Japanese encephalitis virus infection induces changes of mRNA profile of mouse spleen and brain, Virology Journal, vol.8, issue.1, p.80, 2011.
DOI : 10.1186/1743-422X-8-80

J. Kimura-kuroda and K. Yasui, Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies, J Immunol, vol.141, pp.3606-3610, 1988.

M. Cardosa, S. Gordon, S. Hirsch, T. Springer, and J. Porterfield, Interaction of West Nile virus with primary murine macrophages: role of cell activation and receptors for antibody and complement, J Virol, vol.57, pp.952-959, 1986.

M. Diamond, B. Shrestha, A. Marri, D. Mahan, and M. Engle, B Cells and Antibody Play Critical Roles in the Immediate Defense of Disseminated Infection by West Nile Encephalitis Virus, Journal of Virology, vol.77, issue.4, pp.2578-2586, 2003.
DOI : 10.1128/JVI.77.4.2578-2586.2003

L. Pantelic, H. Sivakumaran, and N. Urosevic, Differential Induction of Antiviral Effects against West Nile Virus in Primary Mouse Macrophages Derived from Flavivirus-Susceptible and Congenic Resistant Mice by Alpha/Beta Interferon and Poly(I-C), Journal of Virology, vol.79, issue.3, pp.1753-1764, 2005.
DOI : 10.1128/JVI.79.3.1753-1764.2005

A. Aleyas, Y. Han, J. George, B. Kim, and K. Kim, Multifront Assault on Antigen Presentation by Japanese Encephalitis Virus Subverts CD8+ T Cell Responses, The Journal of Immunology, vol.185, issue.3, pp.1429-1441, 2010.
DOI : 10.4049/jimmunol.0902536

K. Dutta, K. Kumawat, A. Nazmi, M. Mishra, and A. Basu, Minocycline Differentially Modulates Viral Infection and Persistence in an Experimental Model of Japanese Encephalitis, Journal of Neuroimmune Pharmacology, vol.85, issue.1, pp.553-565, 2010.
DOI : 10.1007/s11481-010-9233-8

M. Rios, M. Zhang, A. Grinev, K. Srinivasan, and S. Daniel, Monocytes-macrophages are a potential target in human infection with West Nile virus through blood transfusion, Transfusion, vol.174, issue.4, pp.659-667, 2006.
DOI : 10.1034/j.1600-0609.2001.066004221.x

S. Mukhopadhyay, R. Kuhn, and M. Rossmann, A structural perspective of the flavivirus life cycle, Nature Reviews Microbiology, vol.55, issue.1, pp.13-22, 2005.
DOI : 10.1080/096876899294706

E. Navarro-sanchez, R. Altmeyer, A. A. Schwartz, O. Fieschi, and F. , Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses, EMBO Reports, vol.4, issue.7, pp.723-728, 2003.
DOI : 10.1038/sj.embor.embor866

URL : https://hal.archives-ouvertes.fr/pasteur-01372706

M. Silva, A. Guerrero-plata, F. Gilfoy, R. Garofalo, and P. Mason, Differential Activation of Human Monocyte-Derived and Plasmacytoid Dendritic Cells by West Nile Virus Generated in Different Host Cells, Journal of Virology, vol.81, issue.24, pp.13640-13648, 2007.
DOI : 10.1128/JVI.00857-07

D. Ben-nathan, I. Huitinga, S. Lustig, N. Van-rooijen, and D. Kobiler, West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice, Archives of Virology, vol.107, issue.3-4, pp.459-469, 1996.
DOI : 10.1007/BF01718310

P. Marianneau, A. Steffan, C. Royer, M. Drouet, and D. Jaeck, Infection of primary cultures of human Kupffer cells by Dengue virus: no viral progeny synthesis, but cytokine production is evident, J Virol, vol.73, pp.5201-5206, 1999.

C. Davis, H. Nguyen, S. Hanna, M. Sanchez, and R. Doms, West Nile Virus Discriminates between DC-SIGN and DC-SIGNR for Cellular Attachment and Infection, Journal of Virology, vol.80, issue.3, pp.1290-1301, 2006.
DOI : 10.1128/JVI.80.3.1290-1301.2006

J. Miller, B. De-wet, L. Martinez-pomares, C. Radcliffe, and R. Dwek, The Mannose Receptor Mediates Dengue Virus Infection of Macrophages, PLoS Pathogens, vol.240, issue.2, p.17, 2008.
DOI : 10.1371/journal.ppat.0040017.st001

K. Shirato, H. Miyoshi, H. Kariwa, and I. Takashima, Detection of West Nile virus and Japanese encephalitis virus using real-time PCR with a probe common to both viruses, Journal of Virological Methods, vol.126, issue.1-2, pp.119-125, 2005.
DOI : 10.1016/j.jviromet.2005.02.001

A. Denes, S. Ferenczi, J. Halasz, Z. Kornyei, and K. Kovacs, Role of CX3CR1 (Fractalkine Receptor) in Brain Damage and Inflammation Induced by Focal Cerebral Ischemia in Mouse, Journal of Cerebral Blood Flow & Metabolism, vol.26, issue.10, pp.1707-1721, 2008.
DOI : 10.1016/S0165-5728(99)00202-7

Y. Fujii, K. Kitaura, K. Nakamichi, T. Takasaki, and R. Suzuki, Accumulation of T-cells with selected T-cell receptors in the brains of Japanese encephalitis virus-infected mice, Jpn J Infect Dis, vol.61, pp.40-48, 2008.

G. Scott, R. Kean, T. Mikheeva, M. Fabis, and J. Mabley, The Therapeutic Effects of PJ34 [N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide.HCl], a Selective Inhibitor of Poly(ADP-Ribose) Polymerase, in Experimental Allergic Encephalomyelitis Are Associated with Immunomodulation, Journal of Pharmacology and Experimental Therapeutics, vol.310, issue.3, pp.1053-1061, 2004.
DOI : 10.1124/jpet.103.063214

J. Schell, C. Crane, M. Smith, J. Roberts, and M. , Differential ex vivo nitric oxide production by acutely isolated neonatal and adult microglia, Journal of Neuroimmunology, vol.189, issue.1-2, pp.75-87, 2007.
DOI : 10.1016/j.jneuroim.2007.07.004

J. Delaloye, T. Roger, Q. Steiner-tardivel, L. Roy, D. et al., Innate Immune Sensing of Modified Vaccinia Virus Ankara (MVA) Is Mediated by TLR2-TLR6, MDA-5 and the NALP3 Inflammasome, PLoS Pathogens, vol.387, issue.6, p.1000480, 2009.
DOI : 10.1371/journal.ppat.1000480.s007