S. Devi, T. Devi, R. Ningshen, D. Kh, R. Singh et al., Penicillium morneffei, an emerging AIDS-related pathogen?a RIMS study, J Indian Med Assoc, vol.107, pp.208-210, 2009.

P. Li, M. Tsui, and K. Ma, Penicillium marneffei: indicator disease for AIDS in South East Asia, AIDS, vol.6, pp.240-241, 1992.

T. Le, M. Wolbers, N. Chi, V. Quang, and N. Chinh, Epidemiology, Seasonality, and Predictors of Outcome of AIDS-Associated Penicillium marneffei Infection in Ho Chi Minh City, Viet Nam, Clinical Infectious Diseases, vol.52, issue.7, pp.945-952, 2011.
DOI : 10.1093/cid/cir028

A. Ho, G. Shankland, and R. Seaton, infection presenting as an immune reconstitution inflammatory syndrome in an HIV patient, International Journal of STD & AIDS, vol.76, issue.11, pp.780-782, 2010.
DOI : 10.1016/S1473-3099(07)70085-3

S. Wong and K. Wong, Penicillium marneffei Infection in AIDS, Patholog Res Int, vol.764293, 2011.

J. Zhang, M. Yang, X. Zhong, Z. He, and G. Liu, A comparative analysis of the clinical and laboratory characteristics in disseminated penicilliosis marneffei in patients with and without human immunodeficiency virus infection], Zhonghua Jie He He Hu Xi Za Zhi, vol.31, pp.740-746, 2008.

S. Wong, K. Wong, W. Hui, S. Lee, and J. Lo, Differences in Clinical and Laboratory Diagnostic Characteristics of Penicilliosis Marneffei in Human Immunodeficiency Virus (HIV)- and Non-HIV-Infected Patients, Journal of Clinical Microbiology, vol.39, issue.12, pp.4535-4540, 2001.
DOI : 10.1128/JCM.39.12.4535-4540.2001

J. Wilkinson and A. Cunningham, Mucosal Transmission of HIV-1: First Stop Dendritic Cells, Current Drug Targets, vol.7, issue.12, pp.1563-1569, 2006.
DOI : 10.2174/138945006779025482

P. Hansasuta and R. Sl, HIV-1 transmission and acute HIV-1 infection, British Medical Bulletin, vol.58, issue.1, pp.109-127, 2001.
DOI : 10.1093/bmb/58.1.109

J. Banchereau and R. Steinman, Dendritic cells and the control of immunity, Nature, vol.392, issue.6673, pp.245-252, 1998.
DOI : 10.1038/32588

R. Steinman, A. Granelli-piperno, M. Pope, C. Trumpfheller, and R. Ignatius, The Interaction of Immunodeficiency Viruses with Dendritic Cells, Curr Top Microbiol Immunol, vol.276, pp.1-30, 2003.
DOI : 10.1007/978-3-662-06508-2_1

K. Lore and M. Larsson, The role of dendritic cells in the pathogenesis of HIV-1 infection, APMIS, vol.184, issue.7-8, pp.776-788, 2003.
DOI : 10.1084/jem.190.11.1669

A. Cunningham, F. Carbone, and T. Geijtenbeek, Langerhans cells and viral immunity, European Journal of Immunology, vol.18, issue.Suppl 1, pp.2377-2385, 2008.
DOI : 10.1002/eji.200838521

L. De-witte, A. Nabatov, M. Pion, D. Fluitsma, and M. De-jong, Langerin is a natural barrier to HIV-1 transmission by Langerhans cells, Nature Medicine, vol.35, issue.3, pp.367-371, 2007.
DOI : 10.1086/322780

S. Gringhuis, M. Van-der-vlist, L. Van-den-berg, J. Den-dunnen, and M. Litjens, HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells, Nature Immunology, vol.246, issue.5, pp.419-426, 2010.
DOI : 10.1073/pnas.86.15.5974

N. Izquierdo-useros, M. Naranjo-gomez, I. Erkizia, M. Puertas, and F. Borras, HIV and Mature Dendritic Cells: Trojan Exosomes Riding the Trojan Horse?, PLoS Pathogens, vol.261, issue.3, p.1000740, 2010.
DOI : 10.1371/journal.ppat.1000740.g004

M. Cavrois, J. Neidleman, and W. Greene, The Achilles Heel of the Trojan Horse Model of HIV-1 trans-Infection, PLoS Pathogens, vol.164, issue.6, p.1000051, 2008.
DOI : 10.1371/journal.ppat.1000051.t001

T. Yamamoto, Y. Tsunetsugu-yokota, Y. Mitsuki, F. Mizukoshi, and T. Tsuchiya, Selective Transmission of R5 HIV-1 over X4 HIV-1 at the Dendritic Cell???T Cell Infectious Synapse Is Determined by the T Cell Activation State, PLoS Pathogens, vol.77, issue.1, p.1000279, 2009.
DOI : 10.1371/journal.ppat.1000279.g006

A. Lekkerkerker, Y. Van-kooyk, and T. Geijtenbeek, Viral Piracy: HIV-1 Targets Dendritic Cells for Transmission, Current HIV Research, vol.4, issue.2, pp.169-176, 2006.
DOI : 10.2174/157016206776055020

L. Wu, Biology of HIV mucosal transmission, Current Opinion in HIV and AIDS, vol.3, issue.5, pp.534-540, 2008.
DOI : 10.1097/COH.0b013e32830634c6

R. Wiley and S. Gummuluru, Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection, Proceedings of the National Academy of Sciences, vol.103, issue.3, pp.738-743, 2006.
DOI : 10.1073/pnas.0507995103

D. Wilflingseder, Z. Banki, M. Dierich, and H. Stoiber, Mechanisms promoting dendritic cell-mediated transmission of HIV, Molecular Immunology, vol.42, issue.2, pp.229-237, 2005.
DOI : 10.1016/j.molimm.2004.06.019

M. Taruishi, K. Terashima, Z. Dewan, N. Yamamoto, and S. Ikeda, Model without Specific Antibody, Microbiology and Immunology, vol.340, issue.9, pp.693-702, 2004.
DOI : 10.1111/j.1348-0421.2004.tb03480.x

T. Geijtenbeek, D. Kwon, R. Torensma, S. Van-vliet, and G. Van-duijnhoven, DC-SIGN, a Dendritic Cell???Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells, Cell, vol.100, issue.5, pp.587-597, 2000.
DOI : 10.1016/S0092-8674(00)80694-7

Y. Tsunetsugu-yokota, K. Akagawa, H. Kimoto, K. Suzuki, and M. Iwasaki, Monocyte-derived cultured dendritic cells are susceptible to human immunodeficiency virus infection and transmit virus to resting T cells in the process of nominal antigen presentation, J Virol, vol.69, pp.4544-4547, 1995.

D. Mcdonald, L. Wu, S. Bohks, V. Kewalramani, and D. Unutmaz, Recruitment of HIV and Its Receptors to Dendritic Cell-T Cell Junctions, Science, vol.300, issue.5623, pp.1295-1297, 2003.
DOI : 10.1126/science.1084238

J. Wang, A. Janas, W. Olson, and L. Wu, Functionally Distinct Transmission of Human Immunodeficiency Virus Type 1 Mediated by Immature and Mature Dendritic Cells, Journal of Virology, vol.81, issue.17, pp.8933-8943, 2007.
DOI : 10.1128/JVI.00878-07

L. Bhoopat, T. Rithaporn, S. Khunamornpong, T. Bhoopat, and C. Taylor, Cell reservoirs in lymph nodes infected with HIV-1 subtype E differ from subtype B: identification by combined in situ polymerase chain reaction and immunohistochemistry, Modern Pathology, vol.172, issue.2, pp.255-263, 2006.
DOI : 10.1002/rmv.369

C. Coleman and L. Wu, HIV interactions with monocytes and dendritic cells: viral latency and reservoirs, Retrovirology, vol.6, issue.1, p.51, 2009.
DOI : 10.1186/1742-4690-6-51

URL : http://doi.org/10.1186/1742-4690-6-51

L. Vachot, V. Williams, J. Bess, J. Lifson, J. Robbiani et al., Candida albicans-Induced DC Activation Partially Restricts HIV Amplification in DCs and Increases DC to T-Cell Spread of HIV, JAIDS Journal of Acquired Immune Deficiency Syndromes, vol.48, issue.4, pp.398-407, 2008.
DOI : 10.1097/QAI.0b013e3181776bc7

J. Wang, C. Wells, and L. Wu, Macropinocytosis and cytoskeleton contribute to dendritic cell-mediated HIV-1 transmission to CD4+ T cells, Virology, vol.381, issue.1, pp.143-154, 2008.
DOI : 10.1016/j.virol.2008.08.028

J. Wang, C. Kwas, and L. Wu, Intercellular Adhesion Molecule 1 (ICAM-1), but Not ICAM-2 and -3, Is Important for Dendritic Cell-Mediated Human Immunodeficiency Virus Type 1 Transmission, Journal of Virology, vol.83, issue.9, pp.4195-4204, 2009.
DOI : 10.1128/JVI.00006-09

I. Frank, M. Piatak, J. Stoessel, H. Romani, N. Bonnyay et al., Infectious and Whole Inactivated Simian Immunodeficiency Viruses Interact Similarly with Primate Dendritic Cells (DCs): Differential Intracellular Fate of Virions in Mature and Immature DCs, Journal of Virology, vol.76, issue.6, pp.2936-2951, 2002.
DOI : 10.1128/JVI.76.6.2936-2951.2002

E. Garcia, M. Pion, A. Pelchen-matthews, L. Collinson, and J. Arrighi, HIV-1 Trafficking to the Dendritic Cell-T-Cell Infectious Synapse Uses a Pathway of Tetraspanin Sorting to the Immunological Synapse, Traffic, vol.97, issue.6, pp.488-501, 2005.
DOI : 10.1111/j.1600-0854.2005.00293.x

N. Izquierdo-useros, J. Blanco, I. Erkizia, M. Fernandez-figueras, and F. Borras, Maturation of Blood-Derived Dendritic Cells Enhances Human Immunodeficiency Virus Type 1 Capture and Transmission, Journal of Virology, vol.81, issue.14, pp.7559-7570, 2007.
DOI : 10.1128/JVI.02572-06

H. Yu, M. Reuter, and D. Mcdonald, HIV Traffics through a Specialized, Surface-Accessible Intracellular Compartment during trans-Infection of T Cells by Mature Dendritic Cells, PLoS Pathogens, vol.74, issue.8, p.1000134, 2008.
DOI : 10.1371/journal.ppat.1000134.s008

M. Pope, M. Betjes, N. Romani, H. Hirmand, and P. Cameron, Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1, Cell, vol.78, issue.3, pp.389-398, 1994.
DOI : 10.1016/0092-8674(94)90418-9

J. Brenchley, D. Price, T. Schacker, T. Asher, and G. Silvestri, Microbial translocation is a cause of systemic immune activation in chronic HIV infection, Nature Medicine, vol.174, issue.12, pp.1365-1371, 2006.
DOI : 10.1038/nm1511

J. Diou, M. Tardif, C. Barat, and M. Tremblay, Dendritic Cells Derived from Hemozoin-Loaded Monocytes Display a Partial Maturation Phenotype that Promotes HIV-1 Trans-Infection of CD4+ T Cells and Virus Replication, The Journal of Immunology, vol.184, issue.6, pp.2899-2907, 2010.
DOI : 10.4049/jimmunol.0901513

J. Diou, M. Tardif, C. Barat, and M. Tremblay, Malaria hemozoin modulates susceptibility of immature monocyte-derived dendritic cells to HIV-1 infection by inducing a mature-like phenotype, Cellular Microbiology, vol.3, issue.5, pp.615-625, 2010.
DOI : 10.1111/j.1462-5822.2009.01420.x

M. Reuter, N. Pecora, C. Harding, D. Canaday, and D. Mcdonald, Mycobacterium tuberculosis Promotes HIV trans-Infection and Suppresses Major Histocompatibility Complex Class II Antigen Processing by Dendritic Cells, Journal of Virology, vol.84, issue.17, pp.8549-8560, 2010.
DOI : 10.1128/JVI.02303-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919047

W. Dobson-belaire, A. Rebbapragada, R. Malott, F. Yue, and C. Kovacs, Neisseria gonorrhoeae effectively blocks HIV-1 replication by eliciting a potent TLR9-dependent interferon-?? response from plasmacytoid dendritic cells, Cellular Microbiology, vol.79, issue.1, pp.1703-1717, 2010.
DOI : 10.1111/j.1462-5822.2010.01502.x

S. Bounou, J. Giguere, R. Cantin, C. Gilbert, and M. Imbeault, The importance of virus-associated host ICAM-1 in human immunodeficiency virus type 1 dissemination depends on the cellular context, The FASEB Journal, vol.18, pp.1294-1296, 2004.
DOI : 10.1096/fj.04-1755fje

C. Dong, A. Janas, J. Wang, W. Olson, and L. Wu, Characterization of Human Immunodeficiency Virus Type 1 Replication in Immature and Mature Dendritic Cells Reveals Dissociable cis- and trans-Infection, Journal of Virology, vol.81, issue.20, pp.11352-11362, 2007.
DOI : 10.1128/JVI.01081-07

M. Pion, A. Granelli-piperno, B. Mangeat, R. Stalder, and R. Correa, APOBEC3G/3F mediates intrinsic resistance of monocyte-derived dendritic cells to HIV-1 infection, The Journal of Experimental Medicine, vol.1, issue.13, pp.2887-2893, 2006.
DOI : 10.1084/jem.20051856

F. Wang, J. Huang, H. Zhang, and X. Ma, APOBEC3G upregulation by alpha interferon restricts human immunodeficiency virus type 1 infection in human peripheral plasmacytoid dendritic cells, Journal of General Virology, vol.89, issue.3, pp.722-730, 2008.
DOI : 10.1099/vir.0.83530-0

N. Laguette, B. Sobhian, N. Casartelli, M. Ringeard, and C. Chable-bessia, SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx, Nature, vol.38, issue.7353, pp.654-657, 2011.
DOI : 10.1038/nature10117

URL : https://hal.archives-ouvertes.fr/hal-00616451

K. Hrecka, C. Hao, M. Gierszewska, S. Swanson, and M. Kesik-brodacka, Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein, Nature, vol.7, issue.7353, pp.658-661, 2011.
DOI : 10.1038/nature10195

N. Chung, S. Breun, A. Bashirova, J. Baumann, and T. Martin, HIV-1 Transmission by Dendritic Cell-specific ICAM-3-grabbing Nonintegrin (DC-SIGN) Is Regulated by Determinants in the Carbohydrate Recognition Domain That Are Absent in Liver/Lymph Node-SIGN (L-SIGN), Journal of Biological Chemistry, vol.285, issue.3, pp.2100-2112, 2010.
DOI : 10.1074/jbc.M109.030619