R. Titus and J. Ribeiro, Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity, Science, vol.239, issue.4845, pp.1306-1308, 1988.
DOI : 10.1126/science.3344436

Y. Belkaid, S. Kamhawi, G. Modi, J. Valenzuela, and N. Noben-trauth, Infection in the Mouse Ear Dermis, The Journal of Experimental Medicine, vol.70, issue.10, pp.1941-1953, 1998.
DOI : 10.1126/science.271.5251.987

S. Kamhawi, The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections, Microbes and Infection, vol.2, issue.14, pp.1765-1773, 2000.
DOI : 10.1016/S1286-4579(00)01331-9

F. Oliveira, P. Lawyer, S. Kamhawi, and J. Valenzuela, Immunity to Distinct Sand Fly Salivary Proteins Primes the Anti-Leishmania Immune Response towards Protection or Exacerbation of Disease, PLoS Neglected Tropical Diseases, vol.2, issue.4, p.226, 2008.
DOI : 10.1371/journal.pntd.0000226.t001

M. Abdeladhim, B. Ahmed, M. Marzouki, S. , B. Hmida et al., Human Cellular Immune Response to the Saliva of Phlebotomus papatasi Is Mediated by IL-10-Producing CD8+ T Cells and Th1-Polarized CD4+ Lymphocytes, PLoS Neglected Tropical Diseases, vol.184, issue.10, p.1345, 2011.
DOI : 10.1371/journal.pntd.0001345.s001

URL : https://hal.archives-ouvertes.fr/pasteur-00734414

S. Marzouki, B. Ahmed, M. Boussoffara, T. Abdeladhim, M. et al., Characterization of the Antibody Response to the Saliva of Phlebotomus papatasi in People Living in Endemic Areas of Cutaneous Leishmaniasis, American Journal of Tropical Medicine and Hygiene, vol.84, issue.5, pp.653-661, 2011.
DOI : 10.4269/ajtmh.2011.10-0598

URL : https://hal.archives-ouvertes.fr/pasteur-00606896

I. Chelbi, B. Kaabi, M. Bejaoui, M. Derbali, and E. Zhioua, Scopoli (Diptera: Psychodidae) and Incidence of Zoonotic Cutaneous Leishmaniasis in Tunisia, Journal of Medical Entomology, vol.46, issue.2, pp.400-402, 2009.
DOI : 10.1603/033.046.0229

URL : https://hal.archives-ouvertes.fr/pasteur-00612555

J. Valenzuela, Y. Belkaid, M. Garfield, S. Mendez, and S. Kamhawi, Vaccine Targeting Vector Antigens, The Journal of Experimental Medicine, vol.62, issue.3, pp.331-342, 2001.
DOI : 10.4049/jimmunol.166.8.5122

J. Hostomska, V. Volfova, J. Mu, M. Garfield, and I. Rohousova, Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus, BMC Genomics, vol.10, issue.1, p.282, 2009.
DOI : 10.1186/1471-2164-10-282

H. Kato, J. Anderson, S. Kamhawi, F. Oliveira, and P. Lawyer, High degree of conservancy among secreted salivary gland proteins from two geographically distant Phlebotomus duboscqi sandflies populations (Mali and Kenya), BMC Genomics, vol.7, issue.1, p.226, 2006.
DOI : 10.1186/1471-2164-7-226

F. Oliveira, S. Kamhawi, A. Seitz, V. Pham, and P. Guigal, From transcriptome to immunome: Identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library, Vaccine, vol.24, issue.3, pp.374-390, 2006.
DOI : 10.1016/j.vaccine.2005.07.085

J. Anderson, F. Oliveira, S. Kamhawi, B. Mans, and D. Reynoso, Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis, BMC Genomics, vol.7, issue.1, p.52, 2006.
DOI : 10.1186/1471-2164-7-52

H. Nielsen, J. Engelbrecht, S. Brunak, and G. Von-heijne, A Neural Network Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites, International Journal of Neural Systems, vol.08, issue.05n06, pp.581-599, 1997.
DOI : 10.1142/S0129065797000537

J. Schultz, R. Copley, T. Doerks, C. Ponting, and P. Bork, SMART: a web-based tool for the study of genetically mobile domains, Nucleic Acids Research, vol.28, issue.1, pp.231-234, 2000.
DOI : 10.1093/nar/28.1.231

A. Bateman, E. Birney, R. Durbin, S. Eddy, and K. Howe, The Pfam Protein Families Database, Nucleic Acids Research, vol.28, issue.1, pp.263-266, 2000.
DOI : 10.1093/nar/28.1.263

URL : https://hal.archives-ouvertes.fr/hal-01294685

A. James, K. Blackmer, O. Marinotti, C. Ghosn, and J. Racioppi, Isolation and characterization of the gene expressing the major salivary gland protein of the female mosquito, Aedes aegypti, Molecular and Biochemical Parasitology, vol.44, issue.2, pp.245-253, 1991.
DOI : 10.1016/0166-6851(91)90010-4

J. Valenzuela, R. Charlab, E. Gonzalez, I. De-miranda-santos, and O. Marinotti, The D7 family of salivary proteins in blood sucking diptera, Insect Molecular Biology, vol.22, issue.2, pp.149-155, 2002.
DOI : 10.1021/bi973050y

D. Hekmat-scafe, R. Dorit, and J. Carlson, Molecular evolution of odorantbinding protein genes OS-E and OS-F in Drosophila, Genetics, vol.155, pp.117-127, 2000.

P. Alvarenga, I. Francischetti, E. Calvo, A. Sa-nunes, and J. Ribeiro, The Function and Three-Dimensional Structure of a Thromboxane A2/Cysteinyl Leukotriene-Binding Protein from the Saliva of a Mosquito Vector of the Malaria Parasite, PLoS Biology, vol.3, issue.11, p.1000547, 2010.
DOI : 10.1371/journal.pbio.1000547.s005

E. Calvo, B. Mans, J. Andersen, and J. Ribeiro, Function and Evolution of a Mosquito Salivary Protein Family, Journal of Biological Chemistry, vol.281, issue.4, pp.1935-1942, 2006.
DOI : 10.1074/jbc.M510359200

H. Isawa, Y. Orito, S. Iwanaga, N. Jingushi, and A. Morita, Identification and characterization of a new kallikrein-kinin system inhibitor from the salivary glands of the malaria vector mosquito Anopheles stephensi, Insect Biochemistry and Molecular Biology, vol.37, issue.5, pp.466-477, 2007.
DOI : 10.1016/j.ibmb.2007.02.002

J. Ribeiro, B. Mans, and B. Arca, An insight into the sialome of blood-feeding Nematocera, Insect Biochemistry and Molecular Biology, vol.40, issue.11, pp.767-784, 2010.
DOI : 10.1016/j.ibmb.2010.08.002

N. Collin, T. Assumpção, D. Mizurini, D. Gilmore, and A. Dutra-oliveira, Lufaxin, a Novel Factor Xa Inhibitor From the Salivary Gland of the Sand Fly Lutzomyia longipalpis Blocks Protease-Activated Receptor 2 Activation and Inhibits Inflammation and Thrombosis In Vivo, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.9, pp.2185-2198
DOI : 10.1161/ATVBAHA.112.253906

J. Valenzuela, R. Charlab, M. Galperin, and J. Ribeiro, Purification, Cloning, and Expression of an Apyrase from the Bed Bug Cimex lectularius: A NEW TYPE OF NUCLEOTIDE-BINDING ENZYME, Journal of Biological Chemistry, vol.273, issue.46, pp.30583-30590, 1998.
DOI : 10.1074/jbc.273.46.30583

P. Geyer, C. Spana, and V. Corces, On the molecular mechanism of gypsyinduced mutations at the yellow locus of Drosophila melanogaster, EMBO J, vol.5, pp.2657-2662, 1986.

J. Valenzuela, M. Garfield, E. Rowton, and V. Pham, Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi, Journal of Experimental Biology, vol.207, issue.21, pp.3717-3729, 2004.
DOI : 10.1242/jeb.01185

X. Xu, F. Oliveira, B. Chang, C. N. Gomes, and R. , Structure and Function of a "Yellow" Protein from Saliva of the Sand Fly Lutzomyia longipalpis That Confers Protective Immunity against Leishmania major Infection, Journal of Biological Chemistry, vol.286, issue.37, pp.32383-32393, 2011.
DOI : 10.1074/jbc.M111.268904

R. Grespan, H. Lemos, V. Carregaro, W. Verri, . Jr et al., The protein LJM 111 from Lutzomyia longipalpis Salivary Gland Extract (SGE) accounts for the SGE-inhibitory effects upon inflammatory parameters in experimental arthritis model, International Immunopharmacology, vol.12, issue.4, pp.603-610, 2012.
DOI : 10.1016/j.intimp.2012.02.004

E. Calvo, F. Tokumasu, O. Marinotti, J. Villeval, and J. Ribeiro, Aegyptin, a Novel Mosquito Salivary Gland Protein, Specifically Binds to Collagen and Prevents Its Interaction with Platelet Glycoprotein VI, Integrin ??2beta1, and von Willebrand Factor, Journal of Biological Chemistry, vol.282, issue.37, pp.26928-26938, 2007.
DOI : 10.1074/jbc.M705669200

J. Ribeiro, E. Rowton, and R. Charlab, Salivary amylase activity of the phlebotomine sand fly, Lutzomyia longipalpis, Insect Biochemistry and Molecular Biology, vol.30, issue.4, pp.271-277, 2000.
DOI : 10.1016/S0965-1748(99)00119-8

R. Jacobson and Y. Schlein, Phlebotomus papatasi and Leishmania major parasites express ??-amylase and ??-glucosidase, Acta Tropica, vol.78, issue.1, pp.41-49, 2001.
DOI : 10.1016/S0001-706X(00)00164-9

M. Ramalho-ortigao, R. Jochim, J. Anderson, P. Lawyer, and V. Pham, Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sandflies, BMC Genomics, vol.8, issue.1, p.300, 2007.
DOI : 10.1186/1471-2164-8-300

S. Kamhawi, M. Ramalho-ortigao, V. Pham, S. Kumar, and P. Lawyer, A Role for Insect Galectins in Parasite Survival, Cell, vol.119, issue.3, pp.329-341, 2004.
DOI : 10.1016/j.cell.2004.10.009

J. Alves-silva, J. Ribeiro, J. Van-den-abbeele, G. Attardo, and Z. Hao, An insight into the sialome of Glossina morsitans morsitans, BMC Genomics, vol.11, issue.1, p.213, 2010.
DOI : 10.1186/1471-2164-11-213

C. Teixeira, R. Gomes, C. N. Reynoso, D. Jochim, and R. , Discovery of Markers of Exposure Specific to Bites of Lutzomyia longipalpis, the Vector of Leishmania infantum chagasi in Latin America, PLoS Neglected Tropical Diseases, vol.10, issue.3, p.638, 2010.
DOI : 10.1371/journal.pntd.0000638.t001

D. Bahia, N. Gontijo, I. Leon, J. Perales, and M. Pereira, Antibodies from dogs with canine visceral leishmaniasis recognise two proteins from the saliva of Lutzomyia longipalpis, Parasitology Research, vol.31, issue.3, pp.449-454, 2007.
DOI : 10.1007/s00436-006-0307-8

I. Rohousova, S. Ozensoy, Y. Ozbel, and P. Volf, Detection of species-specific antibody response of humans and mice bitten by sand flies, Parasitology, vol.130, issue.5, pp.493-499, 2005.
DOI : 10.1017/S003118200400681X

N. Mencke, P. Volf, V. Volfova, and D. Stanneck, Repellent efficacy of a combination containing imidacloprid and permethrin against sand flies ( Phlebotomus papatasi ) in dogs, Parasitology Research, vol.90, issue.0, pp.108-111, 2003.
DOI : 10.1007/s00436-003-0905-7

R. Gomes, C. Brodskyn, C. De-oliveira, J. Costa, and J. Miranda, Delayed???Type Hypersensitivity, The Journal of Infectious Diseases, vol.186, issue.10, pp.1530-1534, 2002.
DOI : 10.1086/344733

R. Gomes, C. Teixeira, M. Teixeira, F. Oliveira, and M. Menezes, Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model, Proceedings of the National Academy of Sciences, vol.105, issue.22, pp.7845-7850, 2008.
DOI : 10.1073/pnas.0712153105

N. Collin, R. Gomes, C. Teixeira, L. Cheng, and A. Laughinghouse, Sand Fly Salivary Proteins Induce Strong Cellular Immunity in a Natural Reservoir of Visceral Leishmaniasis with Adverse Consequences for Leishmania, PLoS Pathogens, vol.23, issue.5, p.1000441, 2009.
DOI : 10.1371/journal.ppat.1000441.s002

Y. Belkaid, J. Valenzuela, S. Kamhawi, E. Rowton, and D. Sacks, Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: An adaptive response induced by the fly?, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6704-6709, 2000.
DOI : 10.1073/pnas.97.12.6704

X. Huang and A. Madan, CAP3: A DNA Sequence Assembly Program, Genome Research, vol.9, issue.9, pp.868-877, 1999.
DOI : 10.1101/gr.9.9.868

G. Attardo, J. Ribeiro, Y. Wu, M. Berriman, and S. Aksoy, Transcriptome analysis of reproductive tissue and intrauterine developmental stages of the tsetse fly (Glossina morsitans morsitans), BMC Genomics, vol.11, issue.1, p.160, 2010.
DOI : 10.1186/1471-2164-11-160

G. Attardo, P. Strickler-dinglasan, S. Perkin, E. Caler, and M. Bonaldo, Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans morsitans, Insect Molecular Biology, vol.8, issue.4, pp.411-424, 2006.
DOI : 10.1016/S0965-1748(01)00138-2