C. Stiller and D. Parkin, Geographic and ethnic variations in the incidence of childhood cancer, British Medical Bulletin, vol.52, issue.4, pp.682-703, 1996.
DOI : 10.1093/oxfordjournals.bmb.a011577

J. Radich, Philadelphia Chromosome???Positive Acute Lymphocytic Leukemia, Hematology/Oncology Clinics of North America, vol.15, issue.1, pp.21-36, 2001.
DOI : 10.1016/S0889-8588(05)70198-2

O. Raaschou-nielsen and P. Reynolds, Air pollution and childhood cancer: A review of the epidemiological literature, International Journal of Cancer, vol.23, issue.12, pp.2920-2929, 2006.
DOI : 10.1002/ijc.21787

M. Belson, B. Kingsley, and A. Holmes, Risk Factors for Acute Leukemia in Children: A Review, Environmental Health Perspectives, vol.115, issue.1, pp.138-145, 2007.
DOI : 10.1289/ehp.9023

A. Linabery and J. Ross, Trends in childhood cancer incidence in the U.S. (1992???2004), Cancer, vol.15, issue.20, pp.416-432, 1992.
DOI : 10.1002/cncr.23169

G. Balta, N. Yuksek, and E. Ozyurek, Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia, American Journal of Hematology, vol.98, issue.3, pp.154-160, 2003.
DOI : 10.1002/ajh.10339

R. Canalle, R. Burim, and L. Tone, Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia, Environmental and Molecular Mutagenesis, vol.224, issue.103, pp.100-109, 2004.
DOI : 10.1002/em.20003

M. Lanciotti, C. Dufour, and L. Corral, Genetic polymorphism of NAD(P)H:quinone oxidoreductase is associated with an increased risk of infant acute lymphoblastic leukemia without MLL gene rearrangements, Leukemia, vol.19, issue.2, pp.214-216, 2005.
DOI : 10.1038/sj.leu.2403613

M. Smith, Y. Wang, and E. Kane, Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults, Blood, vol.97, issue.5, pp.1422-1426, 2001.
DOI : 10.1182/blood.V97.5.1422

E. Samochatova, N. Chupova, and A. Rudneva, genetic variations in populations of the Russian Federation, Pediatric Blood & Cancer, vol.85, issue.2, pp.203-208, 2009.
DOI : 10.1002/pbc.21837

M. Ingelman-sundberg, Genetic susceptibility to adverse effects of drugs and environmental toxicants, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.482, issue.1-2, pp.11-19, 2001.
DOI : 10.1016/S0027-5107(01)00205-6

D. Long, . Ii, R. Waikel, and X. Wang, NAD(P)H:quinine oxidoreductase 1 deficiency increases susceptibility to benzo(a)pyrene-induced mouse skin carcinogenesis, Cancer Res, vol.60, pp.5913-5915, 2000.

D. Long, . Ii, R. Waikel, and X. Wang, NAD(P)H : quinone Oxidoreductase 1 Deficiency and Increased Susceptibility to 7,12-Dimethylbenz[a]-anthracene-Induced Carcinogenesis in Mouse Skin, JNCI Journal of the National Cancer Institute, vol.93, issue.15, pp.1166-1170, 2001.
DOI : 10.1093/jnci/93.15.1166

D. Flora, S. Bennicelli, C. , D. Agostini, and F. , Cytosolic Activation of Aromatic and Heterocyclic Amines. Inhibition by Dicoumarol and Enhancement in Viral Hepatitis B, Environmental Health Perspectives, vol.102, issue.6, pp.69-74, 1994.
DOI : 10.2307/3432155

K. Chens and A. Lewis, Catalytic properties of NAD(P)H:quinone acceptor oxidoreductase: study involving mouse, human, and mouse-rat chimeric enzymes, Mol Pharmacol, vol.47, pp.934-936, 1995.

A. Iida, A. Sekine, and S. Saito, Catalog of 320 single nucleotide polymorphisms (SNPs) in 20 quinone oxidoreductase and sulfotransferase genes, Journal of Human Genetics, vol.46, issue.4, pp.225-240, 2001.
DOI : 10.1007/s100380170093

N. Hamajima, K. Matsuo, and H. Iwata, NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism and the risk of eight cancers for Japanese, Int J Clin Oncol, vol.7, pp.103-108, 2002.

M. Krajinovic, H. Sinnett, and C. Richer, Role ofNQO1,MPO andCYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia, International Journal of Cancer, vol.46, issue.103, pp.230-236, 2002.
DOI : 10.1002/ijc.1589

A. Gaedigk, R. Tyndale, and M. Jurima-romet, NAD(P)H:quinone oxidoreductase: polymorphisms and allele frequencies in Caucasian, Chinese and Canadian Native Indian and Inuit populations, Pharmacogenetics, vol.8, issue.4, pp.305-313, 1998.
DOI : 10.1097/00008571-199808000-00004

E. Schutz, J. Gummert, and F. Mohr, Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient, The Lancet, vol.341, issue.8842, p.436, 1993.
DOI : 10.1016/0140-6736(93)93028-Y

P. Kerstens, J. Stolk, and R. De-abreu, Azathioprine-related bone marrow toxicity and low activities of purine enzymes in patients with rheumatoid arthritis, Arthritis & Rheumatism, vol.16, issue.1, pp.142-145, 1995.
DOI : 10.1002/art.1780380122

H. Mcleod, M. Relling, and Q. Liu, Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia, Blood, vol.85, pp.1897-1902, 1995.

O. Salavaggione, L. Wang, and M. Wiepert, Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics, Pharmacogenetics and Genomics, vol.15, issue.11, pp.801-815, 2005.
DOI : 10.1097/01.fpc.0000174788.69991.6b

E. Schaeffeler, U. Zanger, and M. Eichelbaum, Highly Multiplexed Genotyping of Thiopurine S-Methyltransferase Variants Using MALDI-TOF Mass Spectrometry: Reliable Genotyping in Different Ethnic Groups, Clinical Chemistry, vol.54, issue.10, pp.1637-1647, 2008.
DOI : 10.1373/clinchem.2008.103457

H. Mcleod, E. Krynetski, and M. Relling, Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia, Leukemia, vol.14, issue.4, pp.567-572, 2000.
DOI : 10.1038/sj.leu.2401723

D. Otterness, C. Szumlanski, and L. Lennard, Human thiopurine methyltransferase pharmacogenetics: Gene sequence polymorphisms*, Clinical Pharmacology & Therapeutics, vol.12, issue.1, pp.60-73, 1997.
DOI : 10.1016/S0009-9236(97)90152-1

Y. Hon, M. Fessing, and C. Pui, Polymorphism of the thiopurine S-methyltransferase gene in African- Americans, Human Molecular Genetics, vol.8, issue.2, pp.371-376, 1999.
DOI : 10.1093/hmg/8.2.371

E. Collie-duguid, S. Pritchard, and R. Powrie, The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations, Pharmacogenetics, vol.9, issue.1, pp.37-42, 1999.
DOI : 10.1097/00008571-199902000-00006

S. Menif, S. Zarrouki, and R. Jeddi, Quantitative detection of bcr-abl transcripts in chronic myeloid leukemia, Pathologie Biologie, vol.57, issue.5, pp.388-391, 2009.
DOI : 10.1016/j.patbio.2007.12.010

URL : https://hal.archives-ouvertes.fr/pasteur-01375194

K. Kelsey, D. Ross, and R. Traver, Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy, British Journal of Cancer, vol.76, issue.7, pp.852-854, 1997.
DOI : 10.1038/bjc.1997.474

P. Reddy, R. Naidoo, and T. Robins, GSTM1, GSTP1, and NQO1 Polymorphisms and Susceptibility to Atopy and Airway Hyperresponsiveness among South African Schoolchildren, Lung, vol.162, issue.9, pp.409-414, 2010.
DOI : 10.1007/s00408-010-9246-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611889

N. Guha, J. Chang, and A. Chokkalingam, NQO1 Polymorphisms and De Novo Childhood Leukemia: A HuGE Review and Meta-Analysis, American Journal of Epidemiology, vol.168, issue.11, pp.1221-1320, 2008.
DOI : 10.1093/aje/kwn246

D. Ross, J. Kepa, and S. Winski, NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms, Chemico-Biological Interactions, vol.129, issue.1-2, pp.77-97, 2000.
DOI : 10.1016/S0009-2797(00)00199-X

J. Vijayakrishnan and R. Houlston, Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis, Haematologica, vol.95, issue.8, pp.1405-1414, 2010.
DOI : 10.3324/haematol.2010.022095

L. Ernester, DT-diaphorase: its structure, function, regulation , and role in antioxidant defence and cancer chemotherapy, 1998.

D. Ross, Quinone reductases, Comprehensive toxicology, pp.179-197, 1997.
DOI : 10.1016/b978-0-08-046884-6.00411-5

G. Asher, J. Lotem, and R. Kama, NQO1 stabilizes p53 through a distinct pathway, Proceedings of the National Academy of Sciences, vol.99, issue.5, pp.3099-3104, 2002.
DOI : 10.1073/pnas.052706799

A. Anwar, D. Dehn, and D. Siegel, Interaction of Human NAD(P)H:Quinone Oxidoreductase 1 (NQO1) with the Tumor Suppressor Protein p53 in Cells and Cell-free Systems, Journal of Biological Chemistry, vol.278, issue.12, pp.10368-10373, 2003.
DOI : 10.1074/jbc.M211981200

M. Rimando, M. Chua, and E. Yuson, Prevalence of GSTT1, GSTM1 and NQO1 (609C>T) in Filipino children with ALL (acute lymphoblastic leukaemia)1, Bioscience Reports, vol.28, issue.3, pp.117-124, 2008.
DOI : 10.1042/BSR20070010

T. Kracht, M. Schrappe, and S. Strehl, NQO1 C609T polymorphism in distinct entities of pediatric hematologic neoplasms, Haematologica, vol.89, issue.12, pp.1492-1497, 2004.

J. Wiemels, A. Pagnamenta, and G. Taylor, A lack of a functional NAD(P)H: quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators, Cancer Res, vol.59, pp.4095-4099, 1999.

Q. Liu, H. Chen, and X. Liu, Study on the relationship between polymorphisms of CYP1A1, GSTM1, GSTT1 genes and the susceptibility to acute leukemia in the general population of Hunan province, Zhonghua Liu Xing Bing Xue Za Zh, vol.26, issue.12, pp.975-979, 2005.

M. Krajinovic, D. Labuda, and C. Richer, Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms, Blood, vol.93, issue.5, pp.1496-1501, 1999.

J. Clavel, S. Bellec, and S. Rebouissou, Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy, European Journal of Cancer Prevention, vol.14, issue.6, pp.531-540, 2005.
DOI : 10.1097/00008469-200512000-00007

URL : https://hal.archives-ouvertes.fr/inserm-00085373

M. Ameyaw, E. Collie-duguid, and R. Powrie, Thiopurine methyltransferase alleles in British and Ghanaian populations, Human Molecular Genetics, vol.8, issue.2, pp.367-370, 1999.
DOI : 10.1093/hmg/8.2.367

C. Spire-vayron-de-la-moureyre, H. Debuysere, and B. Mastain, ) in a European population, British Journal of Pharmacology, vol.126, issue.4, pp.879-887, 1998.
DOI : 10.1038/sj.bjp.0702152

C. Yates, E. Krynetski, and M. Fessing, Molecular Diagnosis of Thiopurine S-Methyltransferase Deficiency: Genetic Basis for Azathioprine and Mercaptopurine Intolerance, Annals of Internal Medicine, vol.126, issue.8, pp.608-614, 1997.
DOI : 10.7326/0003-4819-126-8-199704150-00003

M. Relling, M. Hancock, and G. Rivera, Mercaptopurine Therapy Intolerance and Heterozygosity at the Thiopurine S-Methyltransferase Gene Locus, JNCI Journal of the National Cancer Institute, vol.91, issue.23, 1999.
DOI : 10.1093/jnci/91.23.2001