E. Handman, Leishmaniasis: Current Status of Vaccine Development, Clinical Microbiology Reviews, vol.14, issue.2, pp.229-243, 2001.
DOI : 10.1128/CMR.14.2.229-243.2001

F. Modabber, R. Coler, R. S. Levine, M. Dougan, M. Nabel et al., Vaccines against Leishmania New generation vaccines, Informa Healthcare, pp.790-807, 2010.

C. Palatnik-de-sousa, Vaccines for leishmaniasis in the fore coming 25 years, Vaccine, vol.26, issue.14, pp.1709-1724, 2008.
DOI : 10.1016/j.vaccine.2008.01.023

J. Carvalho, J. Rodgers, J. Atouguia, D. Prazeres, and G. Monteiro, DNA vaccines: a rational design against parasitic diseases, Expert Review of Vaccines, vol.9, issue.2, pp.175-91, 2010.
DOI : 10.1586/erv.09.158

D. Nguyen, J. Green, J. Chan, R. Langer, and D. Anderson, Polymeric Materials for Gene Delivery and DNA Vaccination, Advanced Materials, vol.82, issue.8, pp.1-21, 2008.
DOI : 10.1002/adma.200801478

M. J. Copland, T. Rades, N. M. Davies, and M. Baird, Lipid based particulate formulations for the delivery of antigen, Immunology and Cell Biology, vol.45, issue.2, pp.97-105, 2005.
DOI : 10.1016/S0169-409X(98)00013-1

R. Muller, K. Mader, and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery ?????? a review of the state of the art, European Journal of Pharmaceutics and Biopharmaceutics, vol.50, issue.1, pp.161-177, 2000.
DOI : 10.1016/S0939-6411(00)00087-4

M. Joshi and R. Müller, Lipid nanoparticles for parenteral delivery of actives, European Journal of Pharmaceutics and Biopharmaceutics, vol.71, issue.2, pp.161-172, 2009.
DOI : 10.1016/j.ejpb.2008.09.003

G. Coombs and J. Mottram, Proteinases of trypanosomes and Leishmania. In: Trypanosomiasis and Leishmaniasis: Biology and Control, p.177, 1997.

C. Robertson, G. Coombs, M. North, and J. Mottram, Parasite cysteine proteinases, Perspectives in drug discovery and design ESCOM Science publisher. 99 p, 1996.
DOI : 10.1007/BF02174048

J. Sakanari, S. Nadler, V. Chan, J. Engel, and C. Leptak, Leishmania major:Comparison of the Cathepsin L- and B-like Cysteine Protease Genes with Those of Other Trypanosomatids, Experimental Parasitology, vol.85, issue.1, pp.63-76, 1997.
DOI : 10.1006/expr.1996.4116

S. Rafati, N. Fasel, and S. Masina, Leishmania Cysteine Proteinases: From Gene to Subunit Vaccine, Current Genomics, vol.4, issue.3, pp.253-61, 2003.
DOI : 10.2174/1389202033490439

S. Rafati, F. Zahedifard, K. Azari, M. Taslimi, Y. Taheri et al., Leishmania infantum: Prime boost vaccination with C-terminal extension of cysteine proteinase type I displays both type 1 and 2 immune signatures in BALB/c mice, Experimental Parasitology, vol.118, issue.3, pp.393-401, 2008.
DOI : 10.1016/j.exppara.2007.10.004

URL : https://hal.archives-ouvertes.fr/pasteur-00796762

S. Rafati, A. Salmanian, T. Taheri, M. Vafa, and N. Fasel, A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major, Vaccine, vol.19, issue.25-26, pp.3369-75, 2001.
DOI : 10.1016/S0264-410X(01)00081-0

J. Greenland and N. Letvin, Chemical adjuvants for plasmid DNA vaccines, Vaccine, vol.25, issue.19, pp.3731-3741, 2007.
DOI : 10.1016/j.vaccine.2007.01.120

J. Mutiso, J. Macharia, and M. Gicheru, A review of adjuvants for Leishmania vaccine candidates, Journal of Biomedical Research, vol.24, issue.1, pp.16-25, 2010.
DOI : 10.1016/S1674-8301(10)60004-8

D. Doroud, A. Vatanara, F. Zahedifard, E. Gholami, and R. Vahabpour, Cationic Solid Lipid Nanoparticles Loaded by Cystein Proteinase Genes as a Novel anti-Leishmaniasis DNA Vaccine Delivery System: Characterization and in vitro Evaluations, Journal of Pharmacy & Pharmaceutical Sciences, vol.13, issue.3, pp.320-335, 2010.
DOI : 10.18433/J3R30T

URL : https://hal.archives-ouvertes.fr/pasteur-00786930

N. Singh, R. Gupta, A. K. Jaiswal, S. Sundar, and A. Dube, Transgenic Leishmania donovani clinical isolates expressing green fluorescent protein constitutively for rapid and reliable ex vivo drug screening, Journal of Antimicrobial Chemotherapy, vol.64, issue.2, pp.370-374, 2009.
DOI : 10.1093/jac/dkp206

A. Viana-da-costa, M. Huerre, M. Delacre, C. Auriault, C. Costa et al., IL-10 leads to a higher parasite persistence in a resistant mouse model of Leishmania major infection, Parasitology International, vol.51, issue.4, pp.367-379, 2002.
DOI : 10.1016/S1383-5769(02)00039-9

P. A. Buffet, A. Sulahian, Y. Garin, N. Nassar, and F. Derouin, Culture microtitration: a sensitive method for quantifying Leishmania infantum in tissues of infected mice, Antimicrobial Agents and Chemotherapy, vol.39, issue.9, pp.2167-2168, 1995.
DOI : 10.1128/AAC.39.9.2167

R. N. Coler and S. Reed, Second-generation vaccines against leishmaniasis, Trends in Parasitology, vol.21, issue.5, pp.244-249, 2005.
DOI : 10.1016/j.pt.2005.03.006

S. Reed, S. Bertholet, R. Coler, and M. Friede, New horizons in adjuvants for vaccine development, Trends in Immunology, vol.30, issue.1, pp.23-32, 2009.
DOI : 10.1016/j.it.2008.09.006

R. Mehta, R. Huang, M. Yang, X. Zhang, and B. Kolli, Real-Time In Vivo Green Fluorescent Protein Imaging of a Murine Leishmaniasis Model as a New Tool for Leishmania Vaccine and Drug Discovery, Clinical and Vaccine Immunology, vol.15, issue.12, pp.1764-1770, 2008.
DOI : 10.1128/CVI.00270-08

A. Bolhassani, T. Taheri, Y. Taslimi, S. Zamanilui, and F. Zahedifard, Fluorescent Leishmania species: Development of stable GFP expression and its application for in vitro and in vivo studies, Experimental Parasitology, vol.127, issue.3, pp.637-645, 2011.
DOI : 10.1016/j.exppara.2010.12.006

URL : https://hal.archives-ouvertes.fr/pasteur-00786977

C. Cuadros, F. Lopez-hernandez, A. Dominguez, M. Mc-clelland, and J. Lustgarten, Flagellin Fusion Proteins as Adjuvants or Vaccines Induce Specific Immune Responses, Infection and Immunity, vol.72, issue.5, pp.2810-2816, 2004.
DOI : 10.1128/IAI.72.5.2810-2816.2004

S. Rafati, A. Kariminia, S. Seyde-eslami, M. Narimani, and T. Taheri, Recombinant cysteine proteinases-based vaccines against Leishmania major in BALB/c mice: the partial protection relies on interferon gamma producing CD8+ T lymphocyte activation, Vaccine, vol.20, issue.19-20, pp.24-39, 2002.
DOI : 10.1016/S0264-410X(02)00189-5

J. Brewer, L. Tetley, R. J. Liew, F. , and A. J. , Cellular immunology and immune regulation: Lipid Vesicle Size Determines the Th1 or Th2 Response to Entrapped Antigen, J Immunol, vol.161, pp.4000-4007, 1998.

D. Klinman, G. Yamshchikov, and Y. Ishigatsubo, Contribution of CpG motifs to the immunogenicity of DNA vaccines, J Immunol, vol.158, pp.3635-3639, 1997.

K. Wilson, S. De-jong, and Y. Tam, Lipid-based delivery of CpG oligonucleotides enhances immunotherapeutic efficacy, Advanced Drug Delivery Reviews, vol.61, issue.3, pp.233-242, 2009.
DOI : 10.1016/j.addr.2008.12.014

L. Xu and T. Anchordoquy, Cholesterol domains in cationic lipid/DNA complexes improve transfection, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.10, pp.2177-2181, 2008.
DOI : 10.1016/j.bbamem.2008.04.009

F. Seeballuck, E. Lawless, M. Ashford, O. Driscoll, and C. , Stimulation of Triglyceride-Rich Lipoprotein Secretion by Polysorbate 80: In Vitro and in Vivo Correlation Using Caco-2 Cells and a Cannulated Rat Intestinal Lymphatic Model, Pharmaceutical Research, vol.207, issue.12, pp.2320-2326, 2004.
DOI : 10.1007/s11095-004-7684-4

D. Vangasseri, Z. Cui, W. Chen, D. Hokey, and L. Falo, Immunostimulation of dendritic cells by cationic liposomes, Molecular Membrane Biology, vol.160, issue.5, pp.385-395, 2006.
DOI : 10.1126/science.278.5343.1612