L. Kedzierski, A. Sakthianandeswaren, J. Curtis, P. Andrews, P. Junk et al., Leishmaniasis: Current Treatment and Prospects for New Drugs and Vaccines, Current Medicinal Chemistry, vol.16, issue.5, pp.599-614, 2009.
DOI : 10.2174/092986709787458489

D. Verthelyi and D. Klinman, Immunoregulatory activity of CpG oligonucleotides in humans and nonhuman primates, Clinical Immunology, vol.109, issue.1, pp.64-71, 2003.
DOI : 10.1016/S1521-6616(03)00202-X

S. G. Reed, S. Bertholet, R. N. Coler, and M. Friede, New horizons in adjuvants for vaccine development, Trends in Immunology, vol.30, issue.1, pp.23-32, 2009.
DOI : 10.1016/j.it.2008.09.006

C. B. Palatnik-de-sousa, Vaccines for leishmaniasis in the fore coming 25 years, Vaccine, vol.26, issue.14, pp.1709-1724, 2008.
DOI : 10.1016/j.vaccine.2008.01.023

S. Rafati, N. Fasel, and S. Masina, Leishmania Cysteine Proteinases: From Gene to Subunit Vaccine, Current Genomics, vol.4, issue.3, pp.253-261, 2003.
DOI : 10.2174/1389202033490439

S. Rafati, A. Salmanian, T. Taheri, M. A. Vafa, and N. Fasel, A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major, Vaccine, vol.19, issue.25-26, pp.3369-75, 2001.
DOI : 10.1016/S0264-410X(01)00081-0

S. Rafati, A. Nakhaee, T. Taheri, Y. Taslimi, H. Darabi et al., Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of ., Vaccine, vol.23, issue.28, pp.3716-3741, 2005.
DOI : 10.1016/j.vaccine.2005.02.009

S. Rafati, F. Zahedifard, M. K. Azari, Y. Taslimi, and T. Taheri, Leishmania infantum: Prime boost vaccination with C-terminal extension of cysteine proteinase type I displays both type 1 and 2 immune signatures in BALB/c mice, Experimental Parasitology, vol.118, issue.3, pp.393-401, 2008.
DOI : 10.1016/j.exppara.2007.10.004

URL : https://hal.archives-ouvertes.fr/pasteur-00796762

K. D. Wilson, S. De-jong, and Y. Tam, Lipid-based delivery of CpG oligonucleotides enhances immunotherapeutic efficacy, Advanced Drug Delivery Reviews, vol.61, issue.3, pp.233-242, 2009.
DOI : 10.1016/j.addr.2008.12.014

R. H. Muller, K. Mader, and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery ?????? a review of the state of the art, European Journal of Pharmaceutics and Biopharmaceutics, vol.50, issue.1, pp.161-177, 2000.
DOI : 10.1016/S0939-6411(00)00087-4

R. H. Muller, D. Ruhl, S. Runge, K. Schulze-forster, and W. Mehnert, Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant, Pharmaceutical Research, vol.14, issue.4, pp.458-462, 1997.
DOI : 10.1023/A:1012043315093

M. D. Joshi and R. H. Müller, Lipid nanoparticles for parenteral delivery of actives, European Journal of Pharmaceutics and Biopharmaceutics, vol.71, issue.2, pp.161-172, 2009.
DOI : 10.1016/j.ejpb.2008.09.003

K. Tabatt, M. Sameti, C. Olbrich, R. H. Müller, and C. M. Lehr, Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer, European Journal of Pharmaceutics and Biopharmaceutics, vol.57, issue.2, pp.155-162, 2004.
DOI : 10.1016/j.ejpb.2003.10.015

A. Del-pozo-rodríguez, D. Delgado, M. A. Solinís, A. R. Gascón, and J. L. Pedraz, Solid lipid nanoparticles: Formulation factors affecting cell transfection capacity, International Journal of Pharmaceutics, vol.339, issue.1-2, pp.261-268, 2007.
DOI : 10.1016/j.ijpharm.2007.03.015

A. Del-pozo-rodríguez, D. Delgado, M. Á. Solinís, J. L. Pedraz, E. Echevarría et al., Solid lipid nanoparticles as potential tools for gene therapy: In vivo protein expression after intravenous administration, International Journal of Pharmaceutics, vol.385, issue.1-2, 2009.
DOI : 10.1016/j.ijpharm.2009.10.020

E. Von-stebut and M. C. Udey, Requirements for Th1-dependent immunity against infection with L. major. Microbs and Infection, pp.1102-1109, 2004.

C. Olbrich, U. Bakowsky, C. M. Lehr, R. H. Müller, and C. Kneuer, Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA, Journal of Controlled Release, vol.77, issue.3, pp.345-355, 2001.
DOI : 10.1016/S0168-3659(01)00506-5

H. Heiati, R. Tawashi, and N. C. Phillips, Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization, Journal of Microencapsulation, vol.10, issue.1, pp.173-184, 1998.
DOI : 10.1016/0163-7258(84)90035-4

C. Rudolph, U. Schillinger, A. Ortiz, K. Tabatt, C. Plank et al., Application of Novel Solid Lipid Nanoparticle (SLN)-Gene Vector Formulations Based on a Dimeric HIV-1 TAT-Peptide in Vitro and in Vivo, Pharmaceutical Research, vol.21, issue.9, pp.1662-1669, 2004.
DOI : 10.1023/B:PHAM.0000041463.56768.ec

C. L. Gebhart and A. V. Kabanov, Evaluation of polyplexes as gene transfer agents, Journal of Controlled Release, vol.73, issue.2-3, pp.401-416, 2001.
DOI : 10.1016/S0168-3659(01)00357-1

M. Feng, D. Lee, and P. Li, Intracellular uptake and release of poly(ethyleneimine)-co-poly(methyl methacrylate) nanoparticle/pDNA complexes for gene delivery, International Journal of Pharmaceutics, vol.311, issue.1-2, pp.209-214, 2006.
DOI : 10.1016/j.ijpharm.2005.12.035

E. Vighi, B. Ruozi, M. Montanari, R. Battini, and E. Leo, Re-dispersible cationic solid lipid nanoparticles (SLNs) freeze-dried without cryoprotectors: Characterization and ability to bind the pEGFP-plasmid, European Journal of Pharmaceutics and Biopharmaceutics, vol.67, issue.2, pp.320-328, 2007.
DOI : 10.1016/j.ejpb.2007.02.006

E. Vighi, B. Ruozi, M. Montanari, R. Battini, and E. Leo, pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles, International Journal of Pharmaceutics, vol.389, issue.1-2, pp.254-261, 2010.
DOI : 10.1016/j.ijpharm.2010.01.030