A. Alrajhi, Cutaneous leishmaniasis of the old world, Skin Therapy Lett, vol.8, issue.2, pp.1-8, 2003.

C. David and N. Craft, Cutaneous and mucocutaneous leishmaniasis, Dermatologic Therapy, vol.72, issue.2, pp.491-502, 2009.
DOI : 10.1111/j.1529-8019.2009.01272.x

H. Goto and J. Lindoso, Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis, Expert Review of Anti-infective Therapy, vol.8, issue.4, pp.419-432, 2010.
DOI : 10.1586/eri.10.19

K. Kishore, V. Kumar, S. Kesari, D. Dinesh, and A. Kumar, Vector control in leishmaniasis, Indian J Med Res, vol.123, pp.467-472, 2006.

T. Piscopo and A. Mallia, Leishmaniasis, Postgraduate Medical Journal, vol.82, issue.972, pp.649-657, 2006.
DOI : 10.1136/pgmj.2006.047340

H. Murray, J. Berman, C. Davies, and N. Saravia, Advances in leishmaniasis, The Lancet, vol.366, issue.9496, pp.1561-1577, 2005.
DOI : 10.1016/S0140-6736(05)67629-5

S. Nylen and G. Sh, Immunological perspectives of leishmaniasis, Journal of Global Infectious Diseases, vol.2, issue.2, pp.135-146, 2010.
DOI : 10.4103/0974-777X.62876

P. Tripathi, V. Singh, and S. Naik, Immune response to leishmania: paradox rather than paradigm, FEMS Immunology & Medical Microbiology, vol.51, issue.2, pp.229-242, 2007.
DOI : 10.1111/j.1574-695X.2007.00311.x

M. Roberts, Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment, British Medical Bulletin, vol.75, issue.1, pp.115-130, 2006.
DOI : 10.1093/bmb/ldl003

F. Modabber, Development of vaccines against leishmaniasis, Scand J Infect Dis, vol.76, pp.72-78, 1990.

G. Grimaldi, Meetings on vaccine studies towards the control of leishmaniasis, Mem??rias do Instituto Oswaldo Cruz, vol.90, issue.4, pp.413-418, 1995.
DOI : 10.1590/S0074-02761995000400025

R. Titus, F. Gueiros-filho, L. De-freitas, and S. Beverley, Development of a safe live Leishmania vaccine line by gene replacement., Proceedings of the National Academy of Sciences, vol.92, issue.22, pp.10267-10271, 1995.
DOI : 10.1073/pnas.92.22.10267

S. Ahmed, C. Bahloul, C. Robbana, S. Askri, and K. Dellagi, A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major, Vaccine, vol.22, issue.13-14, pp.1631-1639, 2004.
DOI : 10.1016/j.vaccine.2003.10.046

R. Coler, Y. Skeiky, K. Bernards, K. Greeson, and D. Carter, Immunization with a Polyprotein Vaccine Consisting of the T-Cell Antigens Thiol-Specific Antioxidant, Leishmania major Stress-Inducible Protein 1, and Leishmania Elongation Initiation Factor Protects against Leishmaniasis, Infection and Immunity, vol.70, issue.8, pp.4215-4225, 2002.
DOI : 10.1128/IAI.70.8.4215-4225.2002

N. Dunning, Leishmania vaccines: from leishmanization to the era of DNA technology, Bioscience Horizons, vol.2, issue.1, pp.73-82, 2009.
DOI : 10.1093/biohorizons/hzp004

S. Rafati, A. Salmanian, T. Taheri, M. Vafa, and N. Fasel, A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major, Vaccine, vol.19, issue.25-26, pp.3369-3375, 2001.
DOI : 10.1016/S0264-410X(01)00081-0

E. Dumonteil, M. Jesus, R. Javier, E. , M. Del-rosario et al., DNA vaccines induce partial protection against Leishmania mexicana, Vaccine, vol.21, issue.17-18, pp.2161-2168, 2003.
DOI : 10.1016/S0264-410X(02)00769-7

E. Marques-da-silva, E. Coelho, D. Gomes, M. Vilela, and C. Masioli, Intramuscular immunization with p36(LACK) DNA vaccine induces IFN-?? production but does not protect BALB/c mice against Leishmania chagasi intravenous challenge, Parasitology Research, vol.6, issue.8, pp.67-74, 2005.
DOI : 10.1007/s00436-005-0008-8

S. Flohe, C. Bauer, S. Flohe, and H. Moll, Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with the intracellular parasite Leishmania major, European Journal of Immunology, vol.28, issue.11, pp.3800-3811, 1998.
DOI : 10.1002/(SICI)1521-4141(199811)28:11<3800::AID-IMMU3800>3.3.CO;2-S

K. Remer, C. Apetrei, T. Schwarz, C. Linden, and H. Moll, Vaccination with plasmacytoid dendritic cells induces protection against infection withLeishmania majorin mice, European Journal of Immunology, vol.13, issue.9, pp.2463-2473, 2007.
DOI : 10.1002/eji.200636780

R. Morris, C. Shoemaker, J. David, G. Lanzaro, and R. Titus, Sandfly Maxadilan Exacerbates Infection with Leishmania major and Vaccinating Against It Protects Against L. major Infection, The Journal of Immunology, vol.167, issue.9, pp.5226-5230, 2001.
DOI : 10.4049/jimmunol.167.9.5226

R. Gomes, C. Teixeira, M. Teixeira, F. Oliveira, and M. Menezes, Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model, Proceedings of the National Academy of Sciences, vol.105, issue.22, pp.7845-7850, 2008.
DOI : 10.1073/pnas.0712153105

A. Mizbani, T. Taheri, F. Zahedifard, Y. Taslimi, and H. Azizi, Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis, Vaccine, vol.28, issue.1, pp.53-62, 2009.
DOI : 10.1016/j.vaccine.2009.09.114

URL : https://hal.archives-ouvertes.fr/pasteur-00796491

L. Kedzierski, Leishmaniasis vaccine: Where are we today?, Journal of Global Infectious Diseases, vol.2, issue.2, pp.177-185, 2010.
DOI : 10.4103/0974-777X.62881

URL : http://doi.org/10.4103/0974-777x.62881

I. Okwar and J. Uzonna, Vaccines and vaccination strategies against human cutaneous leishmaniasis, Human Vaccines, vol.5, issue.5, pp.291-301, 2009.
DOI : 10.4161/hv.5.5.7607

L. Kedzierski, Y. Zhu, and E. Handman, Leishmania vaccines: progress and problems, Parasitology, vol.170, issue.S2, pp.87-112, 2006.
DOI : 10.1017/S0031182006001831

A. Khamesipour, S. Rafati, N. Davoudi, F. Mahboudi, and F. Modabber, Leishmaniasis vaccine candidates for development: A global overview, 2006.

S. Rafati, A. Nakhaee, T. Taheri, Y. Taslimi, and F. Darabi, Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of ., Vaccine, vol.23, issue.28, pp.3716-3725, 2005.
DOI : 10.1016/j.vaccine.2005.02.009

C. Carson, M. Antoniou, M. Begoñ-a-ruiz-argüello, A. Alcami, and V. Christodoulou, A prime/boost DNA/Modified vaccinia virus Ankara vaccine expressing recombinant Leishmania DNA encoding TRYP is safe and immunogenic in outbred dogs, the reservoir of zoonotic visceral leishmaniasis, Vaccine, vol.27, issue.7, pp.1080-1086, 2009.
DOI : 10.1016/j.vaccine.2008.11.094

I. Molano, M. Alonso, C. Miron, E. Redondo, and J. Requena, A Leishmania infantum multi-component antigenic protein mixed with live BCG confers protection to dogs experimentally infected with L. infantum, Veterinary Immunology and Immunopathology, vol.92, issue.1-2, pp.1-13, 2003.
DOI : 10.1016/S0165-2427(02)00315-X

A. Llanos-cuentas, Infectious Disease Research Institute. Study to evaluate the Leish-111F+MPL-SE vaccine in the treatment of mucosal leishmaniasis, 2004.

F. Piazza, Infectious Disease Research Institute Study to Evaluate the Leish- 111f+MPL-SE Vaccine in Healthy Adults Not Previously Exposed to Leishmania Parasite, 2005.

J. Uzonna, K. Joyce, and S. Ph, T Cells, The Journal of Experimental Medicine, vol.162, issue.11, pp.1559-1566, 2004.
DOI : 10.1038/nature01152

H. Sh, P. Kropf, and I. Muller, Cross talk between CD8 + and CD4 + T cells in experimental cutaneous leishmaniasis: CD8+ T cells are required for optimal IFN-c production by CD4 + T cells, Parasite Immunol, vol.25, pp.559-567, 2003.

S. Gurunathan, L. Stobie, C. Prussin, D. Sacks, and N. Glaichenhaus, Requirements for the Maintenance of Th1 Immunity In Vivo Following DNA Vaccination: A Potential Immunoregulatory Role for CD8+ T Cells, The Journal of Immunology, vol.165, issue.2, pp.915-924, 2000.
DOI : 10.4049/jimmunol.165.2.915

I. Muller, P. Kropf, R. Etge, and J. Louis, Gamma interferon response in secondary L. major infection: Role of CD8 + T cells, Infect Immun, vol.61, issue.9, pp.3730-3738, 1993.

I. Muller, P. Kropf, J. Louis, and G. Milon, Expansion of gamma interferon producing CD8+ T cells following secondary infection of mice immune to Leishmania major, Infect Immun, vol.62, issue.6, pp.2575-2581, 1994.

A. Da-cruz, F. Conceição-silva, A. Bertho, and S. Coutinho, Leishmania reactive CD4 + and CD8 + T cells associated with cure of human cutaneous leishmaniasis, Infect Immun, vol.62, issue.6, pp.2614-2618, 1994.

A. Da-cruz, R. Bittar, M. Mattos, M. Oliveira-neto, and R. Nogueira, T-Cell-Mediated Immune Responses in Patients with Cutaneous or Mucosal Leishmaniasis: Long-Term Evaluation after Therapy, Clinical and Vaccine Immunology, vol.9, issue.2, pp.251-256, 2002.
DOI : 10.1128/CDLI.9.2.251-256.2002

N. Rostami, M. Keshavarz, H. Shahrestani, T. Mahboudi, F. Khamesipour et al., CD8+ T Cells as a Source of IFN-?? Production in Human Cutaneous Leishmaniasis, PLoS Neglected Tropical Diseases, vol.23, issue.10, p.845, 2010.
DOI : 10.1371/journal.pntd.0000845.t002

URL : https://hal.archives-ouvertes.fr/pasteur-00829136

Y. Belkaid, V. Stebut, E. Mendez, S. Lira, R. Caler et al., CD8+ T Cells Are Required for Primary Immunity in C57BL/6 Mice Following Low-Dose, Intradermal Challenge with Leishmania major, The Journal of Immunology, vol.168, issue.8, pp.3992-4000, 2002.
DOI : 10.4049/jimmunol.168.8.3992

D. Faria, P. Souza, F. Duraes, E. Carvalho, and K. Gollob, T cells expressing granzyme A is associated with lesion progression in human cutaneous leishmaniasis, Parasite Immunology, vol.63, issue.8, pp.432-439, 2009.
DOI : 10.1111/j.1365-3024.2009.01125.x

. Hernandez-ruizj, N. Salaiza-suazo, G. Carrada, S. Escoto, and A. Ruiz-remigio, CD8 Cells of Patients with Diffuse Cutaneous Leishmaniasis Display Functional Exhaustion: The Latter Is Reversed, In Vitro, by TLR2 Agonists, PLoS Neglected Tropical Diseases, vol.124, issue.5, p.871, 2010.
DOI : 10.1371/journal.pntd.0000871.g006

D. Faria, K. Gollob, J. Barbosa, A. Schriefer, and P. Machado, Decreased In Situ Expression of Interleukin-10 Receptor Is Correlated with the Exacerbated Inflammatory and Cytotoxic Responses Observed in Mucosal Leishmaniasis, Infection and Immunity, vol.73, issue.12, pp.7853-7859, 2005.
DOI : 10.1128/IAI.73.12.7853-7859.2005

M. Colmenares, P. Kima, E. Samoff, L. Soong, and D. Mcmahon-pratt, Perforin and Gamma Interferon Are Critical CD8+ T-Cell-Mediated Responses in Vaccine-Induced Immunity against Leishmania amazonensis Infection, Infection and Immunity, vol.71, issue.6, pp.3172-3182, 2003.
DOI : 10.1128/IAI.71.6.3172-3182.2003

R. Basu, S. Roy, and P. Walden, ???Infected Human Macrophages, The Journal of Infectious Diseases, vol.195, issue.9, pp.1373-1380, 2007.
DOI : 10.1086/513439

S. Rafati, A. Kariminia, S. Seyde-eslami, M. Narimani, and T. Taheri, Recombinant cysteine proteinases-based vaccines against Leishmania major in BALB/c mice: the partial protection relies on interferon gamma producing CD8+ T lymphocyte activation, Vaccine, vol.20, issue.19-20, pp.2439-2447, 2002.
DOI : 10.1016/S0264-410X(02)00189-5

S. Iborra, M. Soto, J. Carrión, C. Alonso, and J. Requena, Vaccination with a plasmid DNA cocktail encoding the nucleosomal histones of Leishmania confers protection against murine cutaneous leishmaniosis, Vaccine, vol.22, issue.29-30, pp.3865-3876, 2004.
DOI : 10.1016/j.vaccine.2004.04.015

S. Farajnia, F. Mahboudi, S. Ajdari, N. Reiner, and A. Kariminia, amastigote class I nuclease with a predominant Th1-like response, Clinical & Experimental Immunology, vol.19, issue.3, pp.498-505, 2005.
DOI : 10.1111/j.1365-2249.2004.02702.x

S. Méndez, S. Gurunathan, S. Kamhawi, Y. Belkaid, and M. Moga, The Potency and Durability of DNA- and Protein-Based Vaccines Against Leishmania major Evaluated Using Low-Dose, Intradermal Challenge, The Journal of Immunology, vol.166, issue.8, pp.5122-5128, 2001.
DOI : 10.4049/jimmunol.166.8.5122

D. Resende, B. Caetano, M. Dutra, M. Penido, and C. Abrantes, Epitope mapping and protective immunity elicited by adenovirus expressing the Leishmania amastigote specific A2 antigen: Correlation with IFN-?? and cytolytic activity by CD8+ T cells, Vaccine, vol.26, issue.35, pp.4585-4593, 2008.
DOI : 10.1016/j.vaccine.2008.05.091

S. Thomson, R. Khana, J. Gardner, S. Burrows, and B. Coupart, Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CD8+ cytotoxic T cells: implications for vaccine design., Proceedings of the National Academy of Sciences, vol.92, issue.13, pp.5845-5849, 1995.
DOI : 10.1073/pnas.92.13.5845

C. Palatnik-de-sousa, Vaccines for leishmaniasis in the fore coming 25 years, Vaccine, vol.26, issue.14, pp.1709-1724, 2008.
DOI : 10.1016/j.vaccine.2008.01.023

S. Cornet, I. Miconnet, J. Menez, F. Lemonnier, and K. Kosmatopoulos, Optimal organization of a polypeptide-based candidate cancer vaccine composed of cryptic tumor peptides with enhanced immunogenicity, Vaccine, vol.24, issue.12, pp.2102-2109, 2006.
DOI : 10.1016/j.vaccine.2005.11.015

D. Fuller, T. Shipley, T. Allen, J. Fuller, and M. Wu, Immunogenicity of hybrid DNA vaccines expressing hepatitis B core particles carrying human and simian immunodeficiency virus epitopes in mice and rhesus macaques, Virology, vol.364, issue.2, pp.245-255, 2007.
DOI : 10.1016/j.virol.2007.02.024

P. Rueda, G. Morón, J. Sarraseca, C. Leclerc, and J. Casal, Influence of flanking sequences on presentation efficiency of a CD8+ cytotoxic T-cell epitope delivered by parvovirus-like particles, Journal of General Virology, vol.85, issue.3, pp.563-572, 2004.
DOI : 10.1099/vir.0.19525-0

B. Livingston, M. Newman, C. Crimi, D. Mckinney, and R. Chesnut, Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines, Vaccine, vol.19, issue.32, pp.4652-4660, 2001.
DOI : 10.1016/S0264-410X(01)00233-X

J. Alexander, C. Oseroff, C. Dahlberg, M. Qin, and G. Ishioka, A Decaepitope Polypeptide Primes for Multiple CD8+ IFN-?? and Th Lymphocyte Responses: Evaluation of Multiepitope Polypeptides as a Mode for Vaccine Delivery, The Journal of Immunology, vol.168, issue.12, pp.6189-6198, 2002.
DOI : 10.4049/jimmunol.168.12.6189

A. Suhrbier, Multi-epitope DNA vaccines, Immunology and Cell Biology, vol.70, issue.4, pp.402-408, 1997.
DOI : 10.1038/icb.1997.63

H. Sbai, A. Mehta, D. Groot, and A. , Use of T Cell Epitopes for Vaccine Development, Current Drug Target -Infectious Disorders, vol.1, issue.3, pp.303-313, 2001.
DOI : 10.2174/1568005014605955

G. Mansour, A. Ghaffari, S. Alimoghadam, K. Ghavamzadeh, and A. , Typing of HLA class I by polymerase chain reaction-sequence specific oligonucleotide primer (PCR-SSOP), 2006.

H. Rammensee, J. Bachmann, N. Emmerich, O. Bachor, and . Stevanovic´sstevanovic´stevanovic´s, SYFPEITHI: database for MHC ligands and peptide motifs, Immunogenetics, vol.50, issue.3-4, pp.213-219, 1999.
DOI : 10.1007/s002510050595

K. Parker, M. Bednarek, and J. Coligan, Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains, J Immunol, vol.152, pp.163-175, 1994.

A. Doytchinova, P. Guan, and D. Flower, EpiJen: a aserver for multistep T cell epitope prediction, BMC Bioinformatics, vol.7, issue.1, pp.131-141, 2006.
DOI : 10.1186/1471-2105-7-131

P. Reche, J. Glutting, and H. Zhang, Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles, Immunogenetics, vol.56, issue.6, pp.405-419, 2004.
DOI : 10.1007/s00251-004-0709-7

M. Bhasin and G. Raghava, A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes, Journal of Biosciences, vol.451, issue.1, pp.31-42, 2007.
DOI : 10.1007/s12038-007-0004-5

M. Larsen, C. Lundegaard, K. Lamberth, S. Buus, and S. Brunuk, An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions, European Journal of Immunology, vol.240, issue.8, pp.2295-2303, 2005.
DOI : 10.1002/eji.200425811

V. Brusic, N. Petrovsky, G. Zhang, and V. Bajic, Prediction of promiscuous peptides that bind HLA class I molecules, Immunology and Cell Biology, vol.107, issue.3, pp.280-285, 2002.
DOI : 10.1002/1521-4141(200107)31:7<1989::AID-IMMU1989>3.0.CO;2-M

M. Nielsen, C. Lundegaard, T. Blicher, K. Harndahl, and M. , NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence, PLoS ONE, vol.18, issue.8, pp.1-10, 2007.
DOI : 10.1371/journal.pone.0000796.s004

M. Bunce, O. Neill, C. Barnardo, M. Krausa, P. Browning et al., Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP), Tissue Antigens, vol.44, issue.5, pp.355-367, 1995.
DOI : 10.1111/j.1399-0039.1995.tb03127.x

S. Gatz, H. Pohla, and D. Schendel, A PCR-SSP method to specifically select HLA-A*0201 individuals for immunotherapeutic studies, Tissue Antigens, vol.46, issue.6, pp.532-547, 2000.
DOI : 10.1016/0167-5699(96)80614-1

H. Maecker, A. Rinfret, D. Souza, P. Darden, J. Roig et al., Standardization of cytokine flow cytometry assays, BMC Immunology, vol.6, issue.1, pp.13-30, 2005.
DOI : 10.1186/1471-2172-6-13

L. Lamoreaux, M. Roederer, and R. Koup, Intracellular cytokine optimization and standard operating procedure, Nature Protocols, vol.107, issue.3, pp.1507-1516, 2006.
DOI : 10.1038/nprot.2006.268

F. Kern, I. Surel, C. Brock, B. Freistedt, and H. Radtke, T-cell epitope mapping by flow cytometry, Nature Medicine, vol.26, issue.8, pp.975-978, 1998.
DOI : 10.1002/(SICI)1097-0320(19971201)29:4<328::AID-CYTO10>3.0.CO;2-W

C. Scheibenbogen, A. Letsch, E. Thiel, A. Schmittel, and V. Mailaender, CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia, Blood, vol.100, issue.6, pp.2132-2137, 2002.
DOI : 10.1182/blood-2002-01-0163

A. Bredenbeck, F. Losch, T. Sharav, M. Mertens, and M. Filter, Identification of Noncanonical Melanoma-Associated T Cell Epitopes for Cancer Immunotherapy, The Journal of Immunology, vol.174, issue.11, pp.6716-6724, 2005.
DOI : 10.4049/jimmunol.174.11.6716

J. Ruiz and I. Becker, CD8 cytotoxic T cells in cutaneous leishmaniasis, Parasite Immunology, vol.152, issue.12, pp.671-678, 2007.
DOI : 10.1084/jem.174.3.499

A. Suhrbier, Polytope vaccines for the co-delivery of multiple CD8 + Tcell Epitopes, Expert Rev Vaccines, vol.1, issue.2, pp.89-95, 2002.

A. Purcell, J. Mccluskey, and J. Rossjohn, More than one reason to rethink the use of peptides in vaccine design, Nature Reviews Drug Discovery, vol.10, issue.5, pp.404-414, 2007.
DOI : 10.1038/nrd2224

S. Bertholet, R. Goldszmid, A. Morrot, A. Debrabant, and F. Afrin, Leishmania Antigens Are Presented to CD8+ T Cells by a Transporter Associated with Antigen Processing-Independent Pathway In Vitro and In Vivo, The Journal of Immunology, vol.177, issue.6, pp.3525-3533, 2006.
DOI : 10.4049/jimmunol.177.6.3525

P. Kima, N. Ruddle, and D. Mcmahon-pratt, Presentation via the class I pathway by L. amazonensis -infected macrophages of an endogenous leishmanial antigen to CD8 + T cells, J Immunol, vol.159, pp.1828-1834, 1997.

D. Flower, Harnissing bioinformatics to discover new vaccines, Drug Discov Today, vol.12, issue.910, pp.389-395, 2007.

B. Korber, M. Labute, and K. Yusim, Immunoinformatics Comes of Age, PLoS Computational Biology, vol.296, issue.6, pp.484-492, 2006.
DOI : 0193-4511(2002)296[2354:DCIHVS]2.0.CO;2

C. Lundegaard, O. Lund, C. Kesmir, S. Brunak, and M. Nielsen, Modeling the adaptive immune system: predictions and simulations, Bioinformatics, vol.23, issue.24, pp.3265-3275, 2007.
DOI : 10.1093/bioinformatics/btm471

B. Trost, M. Bickis, and A. Kusalik, Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools, Immunome Research, vol.3, issue.1, pp.5-15, 2007.
DOI : 10.1186/1745-7580-3-5

M. Gomez-nunez, J. Pinilla-ibarz, T. Dao, R. May, and M. Pao, Peptide binding motif predictive algorithms correspond with experimental binding of leukemia vaccine candidate peptides to HLA-A*0201 molecules, Leukemia Research, vol.30, issue.10, pp.1293-1298, 2006.
DOI : 10.1016/j.leukres.2006.02.010

S. Mishra and S. Sinha, Prediction and Molecular Modeling of T-cell Epitopes Derived from Placental Alkaline Phosphatase for use in Cancer Immunotherapy, Journal of Biomolecular Structure and Dynamics, vol.257, issue.2, pp.109-121, 2006.
DOI : 10.1021/jm00002a012

M. Hundemer, S. Schmidt, M. Condomines, A. Lupu, and D. Hose, Identification of a new HLA-A2???restricted T-cell epitope within HM1.24 as immunotherapy target for multiple myeloma, Experimental Hematology, vol.34, issue.4, pp.486-496, 2006.
DOI : 10.1016/j.exphem.2006.01.008

URL : https://hal.archives-ouvertes.fr/inserm-00131759

R. Elkington, S. Walker, T. Crough, M. Menzies, and J. Tellam, Ex Vivo Profiling of CD8+-T-Cell Responses to Human Cytomegalovirus Reveals Broad and Multispecific Reactivities in Healthy Virus Carriers, Journal of Virology, vol.77, issue.9, pp.5226-5240, 2003.
DOI : 10.1128/JVI.77.9.5226-5240.2003

Z. Weipeng, L. Haixia, B. Zhu, D. Yuzhong, and C. Zhengtang, Prediction of HLA-A 2.1-restricted CTL epitopes from IGFBP7 antigen of lung carcinoma, Journal of Medical Colleges of PLA, vol.24, issue.2, pp.63-68, 2009.
DOI : 10.1016/S1000-1948(09)60019-8

Q. Xing, X. Pang, J. Peng, Y. Yin, and Y. Li, Identification of new cytotoxic T-lymphocyte epitopes from cancer testis antigen HCA587, Biochemical and Biophysical Research Communications, vol.372, issue.2, pp.331-335, 2008.
DOI : 10.1016/j.bbrc.2008.05.049

A. Boesen, K. Sundar, and R. Coico, Lassa Fever Virus peptides predicted by computational analysis induce epitope-specific CTL responses in HLA-A2.1 transgenic mice, Clin Diagn Lab Immunol, vol.12, issue.10, pp.1223-1230, 2005.

C. Herrera-najera, R. Piñ-a-aguilar, F. Xacur-garcia, M. Ramirez-sierra, and E. Dumonteil, Mining the Leishmania genome for novel antigens and vaccine candidates, PROTEOMICS, vol.39, issue.5, pp.1293-1301, 2009.
DOI : 10.1002/pmic.200800533

J. Sidney, H. Grey, R. Kubo, and A. Sette, Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs, Immunology Today, vol.17, issue.6, pp.261-266, 1996.
DOI : 10.1016/0167-5699(96)80542-1

J. Sidney, B. Peters, N. Frahm, C. Brander, and A. Sette, HLA class I supertypes: a revised and updated classification, BMC Immunology, vol.9, issue.1, pp.1-15, 2008.
DOI : 10.1186/1471-2172-9-1

P. Reche and E. Reinherz, Defenition of MHC supertypes through clustering of MHC peptide binding repertoires, Immunoinformatics: predicting immunogenicity in silico. DR. Flower, pp.163-173, 2007.

A. Khan, O. Miotto, A. Heiny, J. Salmon, and K. Srinivasan, A systematic bioinformatics approach for selection of epitope-based vaccine targets, Cellular Immunology, vol.244, issue.2, pp.141-147, 2006.
DOI : 10.1016/j.cellimm.2007.02.005

I. Doytchinova and D. Flower, Predicting Class I Major Histocompatibility Complex (MHC) Binders Using Multivariate Statistics:?? Comparison of Discriminant Analysis and Multiple Linear Regression, Journal of Chemical Information and Modeling, vol.47, issue.1, pp.234-238, 2007.
DOI : 10.1021/ci600318z

D. Groot, A. Bosma, A. Chinai, N. Frost, J. Jesdale et al., From genome to vaccine: in silico predictions, ex vivo verification, Vaccine, vol.19, issue.31, pp.4385-4395, 2001.
DOI : 10.1016/S0264-410X(01)00145-1

M. Schirle, T. Weinschenk, and S. Stevanovic, Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens, Journal of Immunological Methods, vol.257, issue.1-2, pp.1-16, 2001.
DOI : 10.1016/S0022-1759(01)00459-8

A. Chentoufi, X. Zhang, K. Lamberth, G. Dasgupta, and I. Bettahi, HLA-A*0201-Restricted CD8+ Cytotoxic T Lymphocyte Epitopes Identified from Herpes Simplex Virus Glycoprotein D, The Journal of Immunology, vol.180, issue.1, pp.426-437, 2008.
DOI : 10.4049/jimmunol.180.1.426

V. Schlaphoff, C. Wang, K. Stegmann, P. Fytili, and S. Sarin, Effect of peptide pools on effector functions of antigen-specific CD8+ T cells, J Immunol Methods, vol.342, issue.12, pp.33-48, 2009.

K. Lyke, R. Burges, Y. Cissoko, L. Sangara, and A. Kone, HLA-A2 Supertype-Restricted Cell-Mediated Immunity by Peripheral Blood Mononuclear Cells Derived from Malian Children with Severe or Uncomplicated Plasmodium falciparum Malaria and Healthy Controls, Infection and Immunity, vol.73, issue.9, pp.5799-580, 2005.
DOI : 10.1128/IAI.73.9.5799-5808.2005

F. Guerfali, H. Ben-abdallah, R. Sghaier, K. Ben-aissa, and G. Mkannez, An in silico immunological approach for prediction of CD8+ T cell epitopes of Leishmania major proteins in susceptible BALB/c and resistant C57BL/6 murine models of infection, Infection, Genetics and Evolution, vol.9, issue.3, pp.344-350, 2009.
DOI : 10.1016/j.meegid.2008.02.011

G. Ishioka, J. Fikes, G. Hermanson, B. Livingston, and C. Crimi, Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes, J Immunol, vol.162, pp.3915-3925, 1999.