Skip to Main content Skip to Navigation
New interface
Journal articles

Inhibition of biological phosphorus removal in a sequencing moving bed biofilm reactor in seawater.

Abstract : A new process was developed to achieve denitrifying biological phosphorus removal in wastewaters containing high levels of nitrate and phosphate with a low level of organic matter. This could particularly be useful in recirculating systems such as aquariums or fish farms to prevent accumulation of nitrate and phosphates and to avoid regular cost extensive and polluting water replacement. Phosphorus (P) was removed from the influent in a sequencing moving bed biofilm reactor, stored in the attached biomass and then cyclically removed from the biomass by filling the reactor with anaerobic water from a stock tank. Phosphate was accumulated in the stock tank which allowed for use as fertilizer. The feasibility of the experimental design was demonstrated by using the activated sludge model No. 3 (ASM3) complemented by the EAWAG Bio-P module implemented in the WEST simulation software. A pilot scale experiment was conducted in two identical reactors in two runs: one to treat water from a marine mesocosm, the other to treat a synthetic freshwater influent. No biological phosphorus removal was achieved during the seawater run. During the freshwater run, average P removal efficiency was 20%, of which 80% was attributed to biological removal and 20% to chemical precipitation. The absence of efficiency in seawater was attributed to the high concentration of calcium.
Document type :
Journal articles
Complete list of metadata
Contributor : Charles M. Dozois Connect in order to contact the contributor
Submitted on : Thursday, May 2, 2013 - 3:35:45 AM
Last modification on : Monday, July 20, 2020 - 1:06:04 PM




B. Vallet, M.-A. Labelle, L. Rieger, S. Bigras, S. Parent, et al.. Inhibition of biological phosphorus removal in a sequencing moving bed biofilm reactor in seawater.. Water Science and Technology, 2009, 59 (6), pp.1101-10. ⟨10.2166/wst.2009.047⟩. ⟨pasteur-00819634⟩



Record views