S. Hong, T. Park, and K. Lee, The effect of charge increase on the specificity and activity of a short antimicrobial peptide, Peptides, vol.22, issue.10, pp.1669-1674, 2001.
DOI : 10.1016/S0196-9781(01)00502-2

V. Dhople, A. Krukemeyer, and A. Ramamoorthy, The human beta-defensin-3, an antibacterial peptide with multiple biological functions, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.9, pp.1499-1512, 2006.
DOI : 10.1016/j.bbamem.2006.07.007

K. Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nature Reviews Microbiology, vol.92, issue.3, pp.238-250, 2005.
DOI : 10.1038/nrmicro1098

M. Ouellet, F. Otis, N. Voyer, and M. Auger, Biophysical studies of the interactions between 14-mer and 21-mer model amphipathic peptides and membranes: Insights on their modes of action, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.9, pp.1235-1244, 2006.
DOI : 10.1016/j.bbamem.2006.02.020

R. Hancock, Cationic peptides: effectors in innate immunity and novel antimicrobials, The Lancet Infectious Diseases, vol.1, issue.3, pp.156-164, 2001.
DOI : 10.1016/S1473-3099(01)00092-5

D. Amsterdam, Susceptibility testing of antimicrobials in liquid media Antibiotics in laboratory medicine, pp.52-111, 1996.

S. Lopez, H. Kim, E. Choi, M. Delgado, J. Granja et al., Antibacterial agents based on the cyclic d,l-??-peptide architecture, Nature, vol.120, issue.6845, pp.452-455, 2001.
DOI : 10.1038/35086601

S. Soltani, K. Keymanesh, and S. Sardari, Evaluation of structural features of membrane acting antifungal peptides by artificial neural networks, J Biol Sci, vol.8, issue.5, pp.834-845, 2008.

K. Chu, L. Xia, and T. Ng, Pleurostrin, an antifungal peptide from the oyster mushroom, Peptides, vol.26, issue.11, pp.2098-2103, 2005.
DOI : 10.1016/j.peptides.2005.04.010

J. Wong and T. Ng, Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris), The International Journal of Biochemistry & Cell Biology, vol.37, issue.8, pp.1626-1632, 2005.
DOI : 10.1016/j.biocel.2005.02.022

X. Ye, T. Ng, and P. Rao, Cicerin and arietin, novel chickpea peptides with different antifungal potencies, Peptides, vol.23, issue.5, pp.817-822, 2002.
DOI : 10.1016/S0196-9781(02)00005-0

P. Lin, L. Xia, and T. Ng, First isolation of an antifungal lipid transfer peptide from seeds of a Brassica species, Peptides, vol.28, issue.8, pp.1514-1519, 2007.
DOI : 10.1016/j.peptides.2007.06.028

A. Lipkin, V. Anisimova, A. Nikonorova, A. Babakov, E. Krause et al., An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds, Phytochemistry, vol.66, issue.20, pp.2426-2431, 2005.
DOI : 10.1016/j.phytochem.2005.07.015

L. Xia and T. Ng, Actinchinin, a novel antifungal protein from the gold kiwi fruit, Peptides, vol.25, issue.7, pp.1093-1098, 2004.
DOI : 10.1016/j.peptides.2004.05.002

C. Notredame, D. Higgins, J. Heringa, and . T-coffee, T-coffee: a novel method for fast and accurate multiple sequence alignment, Journal of Molecular Biology, vol.302, issue.1, pp.205-217, 2000.
DOI : 10.1006/jmbi.2000.4042

A. Goede, E. Michalsky, U. Schmidt, and R. Preissner, Super mimic-fitting peptide mimetics into protein structures, BMC Bioinformatics, vol.7, issue.1, p.11, 2006.
DOI : 10.1186/1471-2105-7-11

M. Fullbeck, E. Michalsky, I. Jaeger, P. Henklein, H. Kuhn et al., Design and biological evaluation of photo-switchable inhibitors, Genome Information, vol.17, issue.1, pp.141-151, 2006.

J. Romano, G. Nimrod, N. Ben-tal, Y. Shadkchan, K. Baruch et al., Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence, Microbiology, vol.152, issue.7, pp.1919-1928, 2006.
DOI : 10.1099/mic.0.28936-0

M. Cuenca-estrella, W. Lee-yang, M. Ciblak, B. Arthington-skaggs, E. Mellado et al., Comparative Evaluation of NCCLS M27-A and EUCAST Broth Microdilution Procedures for Antifungal Susceptibility Testing of Candida Species, Antimicrobial Agents and Chemotherapy, vol.46, issue.11, pp.3644-3647, 2002.
DOI : 10.1128/AAC.46.11.3644-3647.2002

A. Gomez-lopez, A. Aberkane, E. Petrikkou, E. Mellado, J. Rodriguez-tudela et al., Analysis of the Influence of Tween Concentration, Inoculum Size, Assay Medium, and Reading Time on Susceptibility Testing of Aspergillus spp., Journal of Clinical Microbiology, vol.43, issue.3, pp.1251-1255, 2005.
DOI : 10.1128/JCM.43.3.1251-1255.2005

S. Viewer, Bern (Switzerland): The SIB Swiss Institute of Bioinformatics Available from, pp.3-7, 1995.

N. Enhanced and . Browser, Nuremberg , Germany: Frederick National Laboratory for Cancer Research (FNLCR). c1997. (cited 2012 Nov 6) Available from

E. Ruge, H. Korting, and C. Borelli, Current state of three-dimensional characterisation of antifungal targets and its use for molecular modelling in drug design, International Journal of Antimicrobial Agents, vol.26, issue.6, pp.427-441, 2005.
DOI : 10.1016/j.ijantimicag.2005.09.006

K. Stigers, M. Soth, and J. Nowick, Designed molecules that fold to mimic protein secondary structures, Current Opinion in Chemical Biology, vol.3, issue.6, pp.714-723, 1999.
DOI : 10.1016/S1367-5931(99)00030-7

R. Edgar, MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, vol.5, issue.1, p.113, 2004.
DOI : 10.1186/1471-2105-5-113

M. Rosenberg, Multiple sequence alignment accuracy and evolutionary distance estimation, BMC Bioinformatics, vol.6, issue.1, p.278, 2005.
DOI : 10.1186/1471-2105-6-278

B. Thomma, B. Cammue, and K. Thevissen, Plant defensins, Planta, vol.216, issue.2, pp.193-202, 2002.
DOI : 10.1007/s00425-002-0902-6

H. Jung, Y. Park, W. Sung, B. Suh, J. Lee et al., Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.6, pp.1400-1405, 2007.
DOI : 10.1016/j.bbamem.2007.02.024

W. Sung, J. Lee, and D. Lee, Fungicidal Effect of Piscidin on Candida albicans: Pore Formation in Lipid Vesicles and Activity in Fungal Membranes, Biological & Pharmaceutical Bulletin, vol.31, issue.10, pp.1906-1910, 2008.
DOI : 10.1248/bpb.31.1906

R. Epand and H. Vogel, Diversity of antimicrobial peptides and their mechanisms of action, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1462, issue.1-2, pp.11-28, 1999.
DOI : 10.1016/S0005-2736(99)00198-4

G. Saberwal and R. Nagaraj, Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.1197, issue.2, pp.109-131, 1994.
DOI : 10.1016/0304-4157(94)90002-7

C. Lawyer, S. Pai, M. Watabe, P. Borgia, T. Mashimo et al., Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides, FEBS Letters, vol.84, issue.1, pp.95-98, 1996.
DOI : 10.1016/0014-5793(96)00637-0

D. Chan, E. Prenner, and H. Vogel, Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.9, pp.1184-1202, 2006.
DOI : 10.1016/j.bbamem.2006.04.006

A. Ramamoorthy, S. Thennarasu, A. Tan, D. Lee, C. Clayberger et al., Cell selectivity correlates with membrane-specific interactions: A case study on the antimicrobial peptide G15 derived from granulysin, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.2, pp.154-163, 2006.
DOI : 10.1016/j.bbamem.2006.02.014

D. Andreu, R. Merrifield, H. Steiner, and H. Boman, N-Terminal analogs of cecropin A: synthesis, antibacterial activity, and conformational properties, Biochemistry, vol.24, issue.7, pp.1683-1688, 1985.
DOI : 10.1021/bi00328a017

Y. Xie, Z. Kai, S. Tobe, X. Deng, Y. Ling et al., Design, synthesis and biological activity of peptidomimetic analogs of insect allatostatins, Peptides, vol.32, issue.3, pp.581-586, 2011.
DOI : 10.1016/j.peptides.2010.10.016

R. Deshmukh and H. Purohit, Peptide Scaffolds: Flexible Molecular Structures With Diverse Therapeutic Potentials, International Journal of Peptide Research and Therapeutics, vol.114, issue.9, pp.125-143, 2012.
DOI : 10.1007/s10989-011-9286-4

L. Heda, R. Sharma, C. Pareek, and P. Chaudhari, Synthesis and Antimicrobial Activity of Some Derivatives of 5-Substituted Indole Dihydropyrimidines, E-Journal of Chemistry, vol.6, issue.3, pp.770-774, 2009.
DOI : 10.1155/2009/893812

U. Singh, B. Sarma, P. Mishra, and A. Ray, Antifungal activity of venenatine, an indole alkaloid isolated fromAlstonia venenata, Folia Microbiologica, vol.12, issue.2, pp.173-176, 2000.
DOI : 10.1007/BF02817419