. Education, . Culture, and . Sports, ), and by the Ministry of Health, Labour, and Welfare, Japan (H20- Shinkou-ippan-013, H21-Chikyukibo-ippan-005) and by Japan Society for the Promotion of Science Fellowship Program (to FYZ), Science and Technology, 18073013.

R. Price, E. Tjitra, C. Guerra, S. Yeung, N. White et al., Vivax malaria: neglected and not benign, Am J Trop Med Hyg, vol.77, pp.79-87, 2007.

I. Mueller, M. Galinski, J. Baird, J. Carlton, D. Kochar et al., Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite, The Lancet Infectious Diseases, vol.9, issue.9, pp.555-66, 2009.
DOI : 10.1016/S1473-3099(09)70177-X

M. Arevalo-herrera, C. Chitnis, and S. Herrera, vaccine, Human Vaccines, vol.6, issue.1, pp.124-156, 2010.
DOI : 10.4161/hv.6.1.9931

R. Carter, K. Mendis, L. Miller, L. Molineaux, and A. Saul, Malaria transmissionblocking vaccines?how can their development be supported, Nature Medicine, vol.6, issue.3, pp.241-245, 2000.
DOI : 10.1038/73062

D. Kaslow, I. Quakyi, C. Syin, M. Raum, D. Keister et al., A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains, Nature, vol.333, issue.6168, pp.74-80, 1988.
DOI : 10.1038/333074a0

Y. Wu, C. Przysiecki, E. Flanagan, S. Bello-irizarry, R. Ionescu et al., Sustained high-titer antibody responses induced by conjugating a malarial vaccine candidate to outer-membrane protein complex, Proceedings of the National Academy of Sciences, vol.103, issue.48, pp.18243-18251, 2006.
DOI : 10.1073/pnas.0608545103

H. Hisaeda, A. Stowers, T. Tsuboi, W. Collins, J. Sattabongkot et al., Antibodies to Malaria Vaccine Candidates Pvs25 and Pvs28 Completely Block the Ability of Plasmodium vivax To Infect Mosquitoes, Infection and Immunity, vol.68, issue.12, pp.6618-6641, 2000.
DOI : 10.1128/IAI.68.12.6618-6623.2000

D. Kaslow, Transmission-Blocking Vaccines, Chem Immunol, vol.80, pp.287-307, 2002.
DOI : 10.1159/000058850

E. Malkin, A. Durbin, D. Diemert, J. Sattabongkot, Y. Wu et al., Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria, Vaccine, vol.23, issue.24, pp.3131-3139, 2005.
DOI : 10.1016/j.vaccine.2004.12.019

Y. Wu, R. Ellis, D. Shaffer, E. Fontes, E. Malkin et al., Phase 1 Trial of Malaria Transmission Blocking Vaccine Candidates Pfs25 and Pvs25 Formulated with Montanide ISA 51, PLoS ONE, vol.2, issue.7, p.2636, 2008.
DOI : 10.1371/journal.pone.0002636.s002

T. Tsuboi, M. Tachibana, O. Kaneko, and M. Torii, Transmission-blocking vaccine of vivax malaria, Parasitology International, vol.52, issue.1, pp.1-11, 2003.
DOI : 10.1016/S1383-5769(02)00037-5

T. Templeton and D. Kaslow, Identification of additional members define a Plasmodium falciparum gene superfamily which includes Pfs48/45 and Pfs230, Molecular and Biochemical Parasitology, vol.101, issue.1-2, pp.223-230, 1999.
DOI : 10.1016/S0166-6851(99)00066-3

C. Kocken, J. Jansen, A. Kaan, P. Beckers, T. Ponnudurai et al., Cloning and expression of the gene coding for the transmission blocking target antigen Pfs48/45 of Plasmodium falciparum, Molecular and Biochemical Parasitology, vol.61, issue.1, pp.59-68, 1993.
DOI : 10.1016/0166-6851(93)90158-T

M. Van-dijk, C. Janse, J. Thompson, A. Waters, J. Braks et al., A Central Role for P48/45 in Malaria Parasite Male Gamete Fertility, Cell, vol.104, issue.1, pp.153-64, 2001.
DOI : 10.1016/S0092-8674(01)00199-4

R. Carter, A. Coulson, S. Bhatti, B. Taylor, and J. Elliott, Predicted disulfide-bonded structures for three uniquely related proteins of Plasmodium falciparum, Pfs230, Pfs4845 and Pf12, Molecular and Biochemical Parasitology, vol.71, issue.2, pp.203-213, 1995.
DOI : 10.1016/0166-6851(94)00054-Q

D. Gerloff, A. Creasey, S. Maslau, and R. Carter, Structural models for the protein family characterized by gamete surface protein Pfs230 of Plasmodium falciparum, Proceedings of the National Academy of Sciences, vol.102, issue.38, pp.13598-603, 2005.
DOI : 10.1073/pnas.0502378102

K. Williamson, M. Criscio, and D. Kaslow, Cloning and expression of the gene for Plasmodium falciparum transmission-blocking target antigen, Pfs230, Molecular and Biochemical Parasitology, vol.58, issue.2, pp.355-363, 1993.
DOI : 10.1016/0166-6851(93)90058-6

M. Van-dijk, B. Van-schaijk, S. Khan, M. Van-dooren, J. Ramesar et al., Three Members of the 6-cys Protein Family of Plasmodium Play a Role in Gamete Fertility, PLoS Pathogens, vol.301, issue.5, p.1000853, 2010.
DOI : 10.1371/journal.ppat.1000853.s008

S. Eksi, B. Czesny, G. Van-gemert, R. Sauerwein, W. Eling et al., Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production, Molecular Microbiology, vol.62, issue.2, pp.991-999, 2006.
DOI : 10.1016/0166-6851(95)02507-3

J. Rener, P. Graves, R. Carter, J. Williams, and T. Burkot, Target antigens of transmission-blocking immunity on gametes of plasmodium falciparum, Journal of Experimental Medicine, vol.158, issue.3, pp.976-81, 1983.
DOI : 10.1084/jem.158.3.976

A. Vermeulen, T. Ponnudurai, P. Beckers, J. Verhave, M. Smits et al., Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito, Journal of Experimental Medicine, vol.162, issue.5, pp.1460-76, 1985.
DOI : 10.1084/jem.162.5.1460

R. Carter, P. Graves, D. Keister, and I. Quakyi, Properties of epitopes of Pfs 48/45, a target of transmission blocking monoclonal antibodies, on gametes of different isolates of Plasmodium falciparum, Parasite Immunology, vol.66, issue.6, pp.587-603, 1990.
DOI : 10.1126/science.3299700

D. Read, A. Lensen, S. Begarnie, S. Haley, A. Raza et al., Transmission-blocking antibodies against multiple, non-variant target epitopes of the Plasmodium falciparum gamete surface antigen Pfs230 are all complement-fixing, Parasite Immunology, vol.16, issue.10, pp.511-520, 1994.
DOI : 10.1073/pnas.88.21.9533

I. Quakyi, R. Carter, J. Rener, N. Kumar, M. Good et al., The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmissionblocking antibodies, J Immunol, vol.139, pp.4213-4220, 1987.

K. Williamson, D. Keister, O. Muratova, and D. Kaslow, Recombinant Pfs230, a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infectivity of Plasmodium falciparum to mosquitoes, Molecular and Biochemical Parasitology, vol.75, issue.1, pp.33-42, 1995.
DOI : 10.1016/0166-6851(95)02507-3

J. Healer, D. Mcguinness, R. Carter, and E. Riley, Transmission-blocking immunity to Plasmodium falciparum in malaria-immune individuals is associated with antibodies to the gamete surface protein Pfs230, Parasitology, vol.119, issue.5, pp.425-458, 1999.
DOI : 10.1017/S0031182099005041

P. Graves, R. Carter, T. Burkot, I. Quakyi, and N. Kumar, Antibodies to Plasmodium falciparum gamete surface antigens in Papua New Guinea sera, Parasite Immunology, vol.55, issue.2, pp.209-227, 1988.
DOI : 10.1016/0166-6851(86)90027-7

M. Hughes and A. Hughes, Natural selection on Plasmodium surface proteins, Molecular and Biochemical Parasitology, vol.71, issue.1, pp.99-113, 1995.
DOI : 10.1016/0166-6851(95)00037-2

J. Healer, V. Murphy, A. Hodder, R. Masciantonio, A. Gemmill et al., Allelic polymorphisms in apical membrane antigen-1 are responsible for evasion of antibody-mediated inhibition in Plasmodium falciparum, Molecular Microbiology, vol.265, issue.1, pp.159-68, 2004.
DOI : 10.1111/j.1365-2958.2003.03974.x

A. Martinelli, S. Cheesman, P. Hunt, R. Culleton, A. Raza et al., A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites, Proceedings of the National Academy of Sciences, vol.102, issue.3, pp.814-823, 2005.
DOI : 10.1073/pnas.0405097102

J. Richards, N. Macdonald, and D. Eisen, Limited polymorphism in Plasmodium falciparum ookinete surface antigen, von Willebrand factor A domain-related protein from clinical isolates, Malaria Journal, vol.5, issue.1, p.55, 2006.
DOI : 10.1186/1475-2875-5-55

I. Niederwieser, I. Felger, and H. Beck, Limited polymorphism in Plasmodium falciparum sexual-stage antigens, Am J Trop Med Hyg, pp.649-711, 2001.

K. Williamson and D. Kaslow, Strain polymorphism of Plasmodium falciparum transmission-blocking target antigen Pfs230, Molecular and Biochemical Parasitology, vol.62, issue.1, pp.125-132, 1993.
DOI : 10.1016/0166-6851(93)90186-2

T. Tsuboi, D. Kaslow, M. Gozar, M. Tachibana, Y. Cao et al., Sequence polymorphism in two novel Plasmodium vivax ookinete surface proteins, Pvs25 and Pvs28, that are malaria transmission-blocking vaccine candidates, Mol Med, vol.4, pp.772-82, 1998.

S. Zakeri, S. Razavi, and N. Djadid, Genetic diversity of transmission blocking vaccine candidate (Pvs25 and Pvs28) antigen in Plasmodium vivax clinical isolates from Iran, Acta Tropica, vol.109, issue.3, pp.176-80, 2009.
DOI : 10.1016/j.actatropica.2008.09.012

J. Carlton, J. Adams, J. Silva, S. Bidwell, H. Lorenzi et al., Comparative genomics of the neglected human malaria parasite Plasmodium vivax, Nature, vol.3, issue.7214, pp.757-63, 2008.
DOI : 10.1038/nature07327

M. Ferreira, N. Karunaweera, M. Da-silva-nunes, N. Da-silva, D. Wirth et al., in Rural Amazonia, The Journal of Infectious Diseases, vol.195, issue.8, pp.1218-1244, 2007.
DOI : 10.1086/512685

P. Orjuela-sanchez, N. Da-silva, M. Da-silva-nunes, and M. Ferreira, Recurrent Parasitemias and Population Dynamics of Plasmodium vivax Polymorphisms in Rural Amazonia, American Journal of Tropical Medicine and Hygiene, vol.81, issue.6, pp.961-969, 2009.
DOI : 10.4269/ajtmh.2009.09-0337

F. Zeyrek, A. Babaoglu, S. Demirel, D. Erdogan, M. Ak et al., Analysis of naturally acquired antibody responses to the 19-kd C-terminal region of merozoite surface protein-1 of Plasmodium vivax from individuals in Sanliurfa, Turkey, Am J Trop Med Hyg, vol.78, pp.729-761, 2008.

K. Tanabe, T. Mita, T. Jombart, A. Eriksson, S. Horibe et al., Plasmodium falciparum Accompanied the Human Expansion out of Africa, Current Biology, vol.20, issue.14, pp.1283-1292, 2010.
DOI : 10.1016/j.cub.2010.05.053

T. Yamauchi, M. Nakazawa, H. Ohmae, K. Kamei, K. Sato et al., Impact of Ethnic Conflict on the Nutritional Status and Quality of Life of Suburban Villagers in the Solomon Islands, Journal of Nutritional Science and Vitaminology, vol.56, issue.4, pp.227-261, 2010.
DOI : 10.3177/jnsv.56.227

K. Tanabe, A. Escalante, N. Sakihama, M. Honda, N. Arisue et al., Recent independent evolution of msp1 polymorphism in Plasmodium vivax and related simian malaria parasites, Molecular and Biochemical Parasitology, vol.156, issue.1, pp.74-83, 2007.
DOI : 10.1016/j.molbiopara.2007.07.002

J. Thompson, D. Higgins, T. Gibson, and . Clustal, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-80, 1994.
DOI : 10.1093/nar/22.22.4673

K. Tamura, J. Dudley, M. Nei, and S. Kumar, MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0, Molecular Biology and Evolution, vol.24, issue.8, pp.1596-1605, 2007.
DOI : 10.1093/molbev/msm092

URL : http://mbe.oxfordjournals.org/cgi/content/short/24/8/1596

N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol, vol.4, pp.406-431, 1987.

J. Rozas, J. Sanchez-delbarrio, X. Messeguer, and R. R. Dnasp, DnaSP, DNA polymorphism analyses by the coalescent and other methods, Bioinformatics, vol.19, issue.18, pp.2496-2503, 2003.
DOI : 10.1093/bioinformatics/btg359

S. Wright, The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating, Evolution, vol.19, issue.3, pp.395-420, 1965.
DOI : 10.2307/2406450

L. Excoffier, P. Smouse, and J. Quattro, Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics, vol.131, pp.479-91, 1992.

M. Nei and T. Gojobori, Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol Biol Evol, vol.3, pp.418-444, 1986.

F. Tajima, Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, vol.123, pp.585-95, 1989.

Y. Fu and W. Li, Statistical tests of neutrality of mutations, Genetics, vol.133, pp.693-709, 1993.

J. Mcdonald and M. Kreitman, Adaptive protein evolution at the Adh locus in Drosophila, Nature, vol.351, issue.6328, pp.652-656, 1991.
DOI : 10.1038/351652a0

M. Nachman, W. Brown, M. Stoneking, and C. Aquadro, Nonneutral mitochondrial DNA variation in humans and chimpanzees, Genetics, vol.142, pp.953-63, 1996.

K. Tetteh, L. Stewart, L. Ochola, A. Amambua-ngwa, A. Thomas et al., Prospective Identification of Malaria Parasite Genes under Balancing Selection, PLoS ONE, vol.133, issue.5, p.5568, 2009.
DOI : 10.1371/journal.pone.0005568.s010

S. Brooks and K. Williamson, Proteolysis of Plasmodium falciparum surface antigen, Pfs230, during gametogenesis, Molecular and Biochemical Parasitology, vol.106, issue.1, pp.77-82, 2000.
DOI : 10.1016/S0166-6851(99)00201-7

E. Riley, K. Williamson, B. Greenwood, and D. Kaslow, Human immune recognition of recombinant proteins representing discrete domains of the Plasmodium falciparum gamete surface protein, Pfs230, Parasite Immunology, vol.143, issue.1, pp.11-20, 1995.
DOI : 10.1016/0166-6851(93)90186-2

P. Sanders, P. Gilson, G. Cantin, D. Greenbaum, T. Nebl et al., Distinct Protein Classes Including Novel Merozoite Surface Antigens in Raft-like Membranes of Plasmodium falciparum, Journal of Biological Chemistry, vol.280, issue.48, pp.40169-76, 2005.
DOI : 10.1074/jbc.M509631200

T. Ishino, Y. Chinzei, and M. Yuda, Two proteins with 6-cys motifs are required for malarial parasites to commit to infection of the hepatocyte, Molecular Microbiology, vol.116, issue.5, pp.1264-75, 2005.
DOI : 10.1111/j.1365-2958.2005.04801.x

A. Escalante, D. Freeland, W. Collins, and A. Lal, The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome, Proceedings of the National Academy of Sciences, vol.95, issue.14, pp.8124-8133, 1998.
DOI : 10.1073/pnas.95.14.8124

T. Hayakawa, R. Culleton, H. Otani, T. Horii, and K. Tanabe, Big Bang in the Evolution of Extant Malaria Parasites, Molecular Biology and Evolution, vol.25, issue.10, pp.2233-2242, 2008.
DOI : 10.1093/molbev/msn171

H. Mitsui, N. Arisue, N. Sakihama, Y. Inagaki, T. Horii et al., Phylogeny of Asian primate malaria parasites inferred from apicoplast genome-encoded genes with special emphasis on the positions of Plasmodium vivax and P. fragile, Gene, vol.450, issue.1-2, pp.32-40, 2010.
DOI : 10.1016/j.gene.2009.10.001

H. Sawai, H. Otani, N. Arisue, N. Palacpac, L. De-oliveira-martins et al., Lineage-specific positive selection at the merozoite surface protein 1 (msp1) locus of Plasmodium vivax and related simian malaria parasites, BMC Evolutionary Biology, vol.10, issue.1, p.52, 2010.
DOI : 10.1186/1471-2148-10-52

R. Ord, S. Polley, T. A. Sutherland, and C. , High sequence diversity and evidence of balancing selection in the Pvmsp3?? gene of Plasmodium vivax in the Venezuelan Amazon, Molecular and Biochemical Parasitology, vol.144, issue.1, pp.86-93, 2005.
DOI : 10.1016/j.molbiopara.2005.08.005

J. Rayner, C. Huber, D. Feldman, P. Ingravallo, M. Galinski et al., Plasmodium vivax merozoite surface protein PvMSP-3?? is radically polymorphic through mutation and large insertions and deletions, Infection, Genetics and Evolution, vol.4, issue.4, pp.309-328, 2004.
DOI : 10.1016/j.meegid.2004.03.003

A. Gomez, C. Suarez, P. Martinez, C. Saravia, and M. Patarroyo, High polymorphism in Plasmodium vivax merozoite surface protein-5 (MSP5), Parasitology, vol.149, issue.06, pp.661-72, 2006.
DOI : 10.1084/jem.193.12.1403

C. Putaporntip, R. Udomsangpetch, U. Pattanawong, L. Cui, and S. Jongwutiwes, Genetic diversity of the Plasmodium vivax merozoite surface protein-5 locus from diverse geographic origins, Gene, vol.456, issue.1-2, pp.24-35, 2010.
DOI : 10.1016/j.gene.2010.02.007

P. Martinez, C. Suarez, P. Cardenas, and M. Patarroyo, Plasmodium vivax Duffy binding protein: a modular evolutionary proposal, Parasitology, vol.128, issue.4, pp.353-66, 2004.
DOI : 10.1017/S0031182003004773

S. Palumbi, Speciation and the evolution of gamete recognition genes: pattern and process, Heredity, vol.59, issue.1, pp.66-76, 2009.
DOI : 10.2307/2408517

S. Tsaur, C. Ting, and C. Wu, Sex in Drosophila mauritiana: A Very High Level of Amino Acid Polymorphism in a Male Reproductive Protein Gene, Acp26Aa, Molecular Biology and Evolution, vol.18, issue.1, pp.22-28, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003716

D. Conway, R. Machado, B. Singh, P. Dessert, Z. Mikes et al., Extreme geographical fixation of variation in the Plasmodium falciparum gamete surface protein gene Pfs48/45 compared with microsatellite loci, Molecular and Biochemical Parasitology, vol.115, issue.2, pp.145-56, 2001.
DOI : 10.1016/S0166-6851(01)00278-X

M. Imwong, S. Nair, S. Pukrittayakamee, D. Sudimack, J. Williams et al., Contrasting genetic structure in Plasmodium vivax populations from Asia and South America, International Journal for Parasitology, vol.37, issue.8-9, pp.1013-1035, 2007.
DOI : 10.1016/j.ijpara.2007.02.010

P. Orjuela-sanchez, N. Karunaweera, M. Da-silva-nunes, N. Da-silva, K. Scopel et al., Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: prospects for genome-wide association studies, BMC Genetics, vol.11, issue.1, p.65, 2010.
DOI : 10.1186/1471-2156-11-65