T. Peters, All about Albumin, Biochemistry, Genetics, and Medical applications, 1996.

R. Radi, K. Bush, T. Cosgrove, and B. Freeman, Reaction of xanthine oxidase-derived oxidants with lipid and protein of human plasma, Archives of Biochemistry and Biophysics, vol.286, issue.1, pp.117-125, 1991.
DOI : 10.1016/0003-9861(91)90016-C

T. Figueira, A. Vercesi, and H. Oliveira, Lack of plasma albumin impairs intravascular lipolysis and explains the associated free fatty acids deficiency and hypertriglyceridemia, Lipids in Health and Disease, vol.9, issue.1, p.146, 21187011.
DOI : 10.1186/1476-511X-9-146

A. Spector, [17] Structure and lipid binding properties of serum albumin, Methods Enzymol, vol.128, pp.320-339, 1986.
DOI : 10.1016/0076-6879(86)28077-5

S. Curry, P. Brick, and N. Franks, Fatty acid binding to human serum albumin: new insights from crystallographic studies, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1441, issue.2-3, pp.131-140, 1999.
DOI : 10.1016/S1388-1981(99)00148-1

M. Mansoor, A. Svardal, and P. Ueland, Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma, Analytical Biochemistry, vol.200, issue.2, pp.218-229, 1992.
DOI : 10.1016/0003-2697(92)90456-H

D. Giustarini, I. Dalle-donne, S. Lorenzini, A. Milzani, and R. Rossi, Age-Related Influence on Thiol, Disulfide, and Protein-Mixed Disulfide Levels in Human Plasma, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.61, issue.10, pp.1030-1038, 2006.
DOI : 10.1093/gerona/61.10.1030

L. Turell, H. Botti, S. Carballal, R. Radi, and B. Alvarez, Sulfenic acid???A key intermediate in albumin thiol oxidation, Journal of Chromatography B, vol.877, issue.28, pp.3384-3392, 2009.
DOI : 10.1016/j.jchromb.2009.03.035

K. Takabayashi, T. Imada, Y. Saito, and Y. Inada, Coupling between fatty acid binding and sulfhydryl oxidation in bovine serum albumin, European Journal of Biochemistry, vol.79, issue.2, pp.291-295, 1983.
DOI : 10.1016/S0021-9673(00)83103-9

Y. Gryzunov, A. Arroyo, J. Vigne, Q. Zhao, V. Tyurin et al., Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper???albumin complexes from antioxidants to prooxidants, Archives of Biochemistry and Biophysics, vol.413, issue.1, pp.53-66, 2003.
DOI : 10.1016/S0003-9861(03)00091-2

Y. Ishima, T. Akaike, U. Kragh-hansen, S. Hiroyama, T. Sawa et al., S-Nitrosylated Human Serum Albumin-mediated Cytoprotective Activity Is Enhanced by Fatty Acid Binding, Journal of Biological Chemistry, vol.283, issue.50, pp.34966-34975, 2008.
DOI : 10.1074/jbc.M807009200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596408

A. Claiborne, Handbook of Methods for Oxygen Radical Research Catalase activity, 1985.

H. Aebi, [13] Catalase in vitro, Methods Enzymol, vol.105, pp.121-126, 1984.
DOI : 10.1016/S0076-6879(84)05016-3

A. Saha, S. Goldstein, D. Cabelli, and G. Czapski, Determination of Optimal Conditions for Synthesis of Peroxynitrite by Mixing Acidified Hydrogen Peroxide with Nitrite, Free Radical Biology and Medicine, vol.24, issue.4, pp.653-659, 1998.
DOI : 10.1016/S0891-5849(97)00365-1

C. Riener, G. Kada, and H. Gruber, Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4???-dithiodipyridine, Analytical and Bioanalytical Chemistry, vol.373, issue.4-5, pp.266-276, 2002.
DOI : 10.1007/s00216-002-1347-2

R. Brodersen, S. Andersen, H. Vorum, S. Nielsen, and A. Pedersen, Multiple fatty acid binding to albumin in human blood plasma, European Journal of Biochemistry, vol.174, issue.2, pp.343-349, 1990.
DOI : 10.1016/0003-9861(79)90036-5

A. Pedersen, B. Hust, S. Andersen, F. Nielsen, and R. Brodersen, Laurate binding to human serum albumin. Multiple binding equilibria investigated by a dialysis exchange method, European Journal of Biochemistry, vol.226, issue.3, pp.545-552, 1986.
DOI : 10.1016/0003-9861(79)90036-5

M. Van-timmeren, S. Bakker, C. Stegeman, R. Gans, and H. Van-goor, Addition of oleic acid to delipidated bovine serum albumin aggravates renal damage in experimental protein-overload nephrosis, Nephrology Dialysis Transplantation, vol.20, issue.11, pp.2349-2357, 2005.
DOI : 10.1093/ndt/gfh964

K. Ellis and J. Morrison, [23] Buffers of constant ionic strength for studying pH-dependent processes, Methods Enzymol, vol.87, pp.405-426, 1982.
DOI : 10.1016/S0076-6879(82)87025-0

S. Lewis, D. Misra, and J. Shafer, Determination of interactive thiol ionizations in bovine serum albumin, glutathione, and other thiols by potentiometric difference titration, Biochemistry, vol.19, issue.26, pp.6129-6137, 1980.
DOI : 10.1021/bi00567a028

L. Sklar, B. Hudson, M. Petersen, and J. Diamond, Conjugated polyene fatty acids as fluorescent probes: spectroscopic characterization, Biochemistry, vol.16, issue.5, pp.813-819, 1977.
DOI : 10.1021/bi00624a001

P. Kuzmic, Program DYNAFIT for the Analysis of Enzyme Kinetic Data: Application to HIV Proteinase, Analytical Biochemistry, vol.237, issue.2, pp.260-273, 1996.
DOI : 10.1006/abio.1996.0238

B. Alvarez, G. Ferrer-sueta, B. Freeman, and R. Radi, Kinetics of Peroxynitrite Reaction with Amino Acids and Human Serum Albumin, Journal of Biological Chemistry, vol.274, issue.2, pp.842-848, 1999.
DOI : 10.1074/jbc.274.2.842

J. Espenson, Chemical Kinetics and reaction mechanisms. 2. Iowa State University, 2002.

L. Sklar, B. Hudson, and R. Simoni, Conjugated polyene fatty acids as fluorescent probes: binding to bovine serum albumin, Biochemistry, vol.16, issue.23, pp.5100-5108, 1977.
DOI : 10.1021/bi00642a024

G. Richieri, A. Anel, and A. Kleinfeld, Interactions of long-chain fatty acids and albumin: Determination of free fatty acid levels using the fluorescent probe ADIFAB, Biochemistry, vol.32, issue.29, pp.7574-7580, 1993.
DOI : 10.1021/bi00080a032

R. Narazaki, T. Maruyama, and M. Otagiri, Probing the cysteine 34 residue in human serum albumin using fluorescence techniques, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1338, issue.2, pp.275-281, 1997.
DOI : 10.1016/S0167-4838(96)00221-X

S. Sugio, A. Kashima, S. Mochizuki, M. Noda, and K. Kobayashi, Crystal structure of human serum albumin at 2.5 A resolution, Protein Engineering Design and Selection, vol.12, issue.6, pp.439-446, 1999.
DOI : 10.1093/protein/12.6.439

A. Bhattacharya, T. Grune, and S. Curry, Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin, Journal of Molecular Biology, vol.303, issue.5, pp.721-732, 2000.
DOI : 10.1006/jmbi.2000.4158

O. Spiga, D. Summa, S. Cirri, A. Bernini, V. Venditti et al., A structurally driven analysis of thiol reactivity in mammalian albumins, Biopolymers, vol.14, issue.4, pp.278-285
DOI : 10.1002/bip.21577

A. Stewart, C. Blindauer, S. Berezenko, D. Sleep, D. Tooth et al., Role of Tyr84 in controlling the reactivity of Cys34 of human albumin, FEBS Journal, vol.133, issue.2, pp.353-362, 2005.
DOI : 10.1111/j.1742-4658.2004.04474.x

C. Winterbourn and D. Metodiewa, Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide, Free Radical Biology and Medicine, vol.27, issue.3-4, pp.322-328, 1999.
DOI : 10.1016/S0891-5849(99)00051-9

G. Whitesides, J. Lilburn, and R. Szajewski, Rates of thiol-disulfide interchange reactions between mono- and dithiols and Ellman's reagent, The Journal of Organic Chemistry, vol.42, issue.2, pp.332-338, 1977.
DOI : 10.1021/jo00422a034

J. Wilson, R. Bayer, and D. Hupe, Structure-reactivity correlations for the thiol-disulfide interchange reaction, Journal of the American Chemical Society, vol.99, issue.24, pp.7922-7926, 1977.
DOI : 10.1021/ja00466a027

B. Manta, M. Hugo, C. Ortiz, G. Ferrer-sueta, M. Trujillo et al., The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2, Archives of Biochemistry and Biophysics, vol.484, issue.2, pp.146-154, 2009.
DOI : 10.1016/j.abb.2008.11.017

S. Powers and M. Jackson, Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production, Physiological Reviews, vol.88, issue.4, pp.1243-1276, 2008.
DOI : 10.1152/physrev.00031.2007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909187

I. West, Radicals and oxidative stress in diabetes, Diabetic Medicine, vol.21, issue.3, pp.171-180, 2000.
DOI : 10.1210/jc.83.8.2886

E. Suzuki, K. Yasuda, N. Takeda, S. Sakata, S. Era et al., Increased oxidized form of human serum albumin in patients with diabetes mellitus, Diabetes Research and Clinical Practice, vol.18, issue.3, pp.153-158, 1992.
DOI : 10.1016/0168-8227(92)90140-M

M. Yamato, T. Shiba, M. Yoshida, T. Ide, N. Seri et al., Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin, FEBS Journal, vol.250, issue.15, pp.3855-3863, 2007.
DOI : 10.1111/j.1742-4658.2007.05914.x

H. Imai, T. Hayashi, T. Negawa, K. Nakamura, M. Tomida et al., Strenuous Exercise-Induced Change in Redox State of Human Serum Albumin during Intensive Kendo Training., The Japanese Journal of Physiology, vol.52, issue.2, pp.135-140, 2002.
DOI : 10.2170/jjphysiol.52.135