P. Aguilar, F. Frohlich, M. Rehman, M. Shales, I. Ulitsky et al., A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking, Nature Structural & Molecular Biology, vol.20, issue.7, pp.901-908, 2010.
DOI : 10.1038/nsmb.1829

F. Alvarez, L. Douglas, A. Rosebrock, and J. Konopka, The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in Candida albicans, Molecular Biology of the Cell, vol.19, issue.12, pp.5214-5225, 2008.
DOI : 10.1091/mbc.E08-05-0479

S. Aronova, K. Wedaman, P. Aronov, K. Fontes, K. Ramos et al., Regulation of Ceramide Biosynthesis by TOR Complex 2, Cell Metabolism, vol.7, issue.2, pp.148-158, 2008.
DOI : 10.1016/j.cmet.2007.11.015

A. Audhya, R. Loewith, A. Parsons, L. Gao, M. Tabuchi et al., Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton, The EMBO Journal, vol.8, issue.19, pp.3747-3757, 2004.
DOI : 10.1016/S1097-2765(04)00083-8

M. Bagnat and K. Simons, Cell surface polarization during yeast mating, Proceedings of the National Academy of Sciences, vol.99, issue.22, pp.14183-14188, 2002.
DOI : 10.1073/pnas.172517799

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137858

M. Bagnat, S. Keranen, A. Shevchenko, and K. Simons, Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast, Proceedings of the National Academy of Sciences, vol.97, issue.7, pp.3254-3259, 2000.
DOI : 10.1073/pnas.97.7.3254

M. Bastiani and R. Parton, Caveolae at a glance, Journal of Cell Science, vol.123, issue.22, pp.3831-3836, 2010.
DOI : 10.1242/jcs.070102

D. Berchtold and T. Walther, TORC2 Plasma Membrane Localization Is Essential for Cell Viability and Restricted to a Distinct Domain, Molecular Biology of the Cell, vol.20, issue.5, pp.1565-1575, 2009.
DOI : 10.1091/mbc.E08-10-1001

D. Berchtold, M. Piccolis, N. Chiaruttini, I. Riezman, H. Riezman et al., Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis, Nature Cell Biology, vol.14, issue.5, pp.542-547, 2012.
DOI : 10.1002/yea.1142

S. Bernardo and S. Lee, Candida albicans SUR7 contributes to secretion, biofilm formation, and macrophage killing, BMC Microbiology, vol.10, issue.1, p.133, 2010.
DOI : 10.1186/1471-2180-10-133

T. Brach, T. Specht, and M. Kaksonen, Reassessment of the role of plasma membrane domains in the regulation of vesicular traffic in yeast, Journal of Cell Science, vol.124, issue.3, pp.328-337, 2011.
DOI : 10.1242/jcs.078519

L. Chen and N. Davis, -Factor Receptor, The Journal of Cell Biology, vol.8, issue.3, pp.731-738, 2000.
DOI : 10.1016/0092-8674(92)90552-N

URL : https://hal.archives-ouvertes.fr/hal-00109057

J. De-bony, A. Lopez, M. Gilleron, M. Welby, G. Laneelle et al., Transverse and lateral distribution of phospholipids and glycolipids in the membrane of the bacterium Micrococcus luteus, Biochemistry, vol.28, issue.9, pp.3728-3737, 1989.
DOI : 10.1021/bi00435a016

R. Demel, J. Jansen, P. Van-dijck, and L. Van-deenen, The preferential interactions of cholesterol with different classes of phospholipids, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.465, issue.1, pp.1-10, 1977.
DOI : 10.1016/0005-2736(77)90350-9

C. Deng, X. Xiong, and A. Krutchinsky, Unifying Fluorescence Microscopy and Mass Spectrometry for Studying Protein Complexes in Cells, Molecular & Cellular Proteomics, vol.8, issue.6, pp.1413-1423, 2009.
DOI : 10.1074/mcp.M800397-MCP200

L. Douglas, H. Wang, S. Keppler-ross, N. Dean, and J. Konopka, Sur7 Promotes Plasma Membrane Organization and Is Needed for Resistance to Stressful Conditions and to the Invasive Growth and Virulence of Candida albicans, mBio, vol.3, issue.1, pp.254-265, 2012.
DOI : 10.1128/mBio.00254-11

A. Douglass and R. Vale, Single-Molecule Microscopy Reveals Plasma Membrane Microdomains Created by Protein-Protein Networks that Exclude or Trap Signaling Molecules in T Cells, Cell, vol.121, issue.6, pp.937-950, 2005.
DOI : 10.1016/j.cell.2005.04.009

D. Fiedler, H. Braberg, M. Mehta, G. Chechik, G. Cagney et al., Functional Organization of the S. cerevisiae Phosphorylation Network, Cell, vol.136, issue.5, pp.952-963, 2009.
DOI : 10.1016/j.cell.2008.12.039

I. Fishov and C. Woldringh, Visualization of membrane domains in Escherichia coli, Molecular Microbiology, vol.6, issue.6, pp.1166-1172, 1999.
DOI : 10.1016/0378-1097(95)00243-X

S. Friant, R. Lombardi, T. Schmelzle, M. Hall, and H. Riezman, Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast, The EMBO Journal, vol.20, issue.23, pp.6783-6792, 2001.
DOI : 10.1093/emboj/20.23.6783

URL : https://hal.archives-ouvertes.fr/hal-00153228

F. Frohlich, K. Moreira, P. Aguilar, N. Hubner, M. Mann et al., A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling, The Journal of Cell Biology, vol.9, issue.7, pp.1227-1242, 2009.
DOI : 10.1074/jbc.M400299200

A. Galindo, A. Hervas-aguilar, O. Rodriguez-galan, O. Vincent, H. Arst et al., PalC, One of Two Bro1 Domain Proteins in the Fungal pH Signalling Pathway, Localizes to Cortical Structures and Binds Vps32, Traffic, vol.122, issue.10, pp.1346-1364, 2007.
DOI : 10.1111/j.1600-0854.2007.00620.x

A. Galindo, A. Calcagno-pizarelli, H. Arst, . Jr, and M. Penalva, An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane, Journal of Cell Science, vol.125, issue.7, pp.1784-1795, 2012.
DOI : 10.1242/jcs.098897

A. Georgiev, D. Sullivan, M. Kersting, J. Dittman, C. Beh et al., Osh Proteins Regulate Membrane Sterol Organization but Are Not Required for Sterol Movement Between the ER and PM, Traffic, vol.111, issue.41, pp.1341-1355, 2011.
DOI : 10.1111/j.1600-0854.2011.01234.x

S. Ghaemmaghami, W. Huh, K. Bower, R. Howson, A. Belle et al., Global analysis of protein expression in yeast, Nature, vol.425, issue.6959, pp.737-741, 2003.
DOI : 10.1038/nature02046

G. Grossmann, M. Opekarova, J. Malinsky, I. Weig-meckl, and W. Tanner, Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast, The EMBO Journal, vol.22, issue.1, pp.1-8, 2007.
DOI : 10.1038/sj.emboj.7601466

G. Grossmann, J. Malinsky, W. Stahlschmidt, M. Loibl, I. Weig-meckl et al., Plasma membrane microdomains regulate turnover of transport proteins in yeast, The Journal of Cell Biology, vol.1711, issue.6, pp.1075-1088, 2008.
DOI : 10.1074/jbc.M400299200

X. Guan, C. Souza, H. Pichler, G. Dewhurst, O. Schaad et al., Functional Interactions between Sphingolipids and Sterols in Biological Membranes Regulating Cell Physiology, Molecular Biology of the Cell, vol.20, issue.7, pp.2083-2095, 2009.
DOI : 10.1091/mbc.E08-11-1126

J. Hancock, Lipid rafts: contentious only from simplistic standpoints, Nature Reviews Molecular Cell Biology, vol.24, issue.6, pp.456-462, 2006.
DOI : 10.1038/nrm1925

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782566

C. Hansen and B. Nichols, Exploring the caves: cavins, caveolins and caveolae, Trends in Cell Biology, vol.20, issue.4, pp.177-186, 2010.
DOI : 10.1016/j.tcb.2010.01.005

A. Hayer, M. Stoeber, C. Bissig, and A. Helenius, Biogenesis of Caveolae: Stepwise Assembly of Large Caveolin and Cavin Complexes, Traffic, vol.131, issue.1, pp.361-382, 2010.
DOI : 10.1111/j.1600-0854.2009.01023.x

A. Herrador, S. Herranz, D. Lara, and O. Vincent, Recruitment of the ESCRT Machinery to a Putative Seven-Transmembrane-Domain Receptor Is Mediated by an Arrestin-Related Protein, Molecular and Cellular Biology, vol.30, issue.4, pp.897-907, 2010.
DOI : 10.1128/MCB.00132-09

D. Hosiner, G. Sponder, A. Graschopf, S. Reipert, R. Schweyen et al., Pun1p is a metal ion-inducible, calcineurin/Crz1p-regulated plasma membrane protein required for cell wall integrity, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1808, issue.4, pp.1108-1119, 2011.
DOI : 10.1016/j.bbamem.2011.01.002

H. Jin, J. Mccaffery, and E. Grote, Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast, The Journal of Cell Biology, vol.173, issue.4, pp.813-826, 2008.
DOI : 10.1091/mbc.E06-03-0177

L. Johannes and S. Mayor, Induced Domain Formation in Endocytic Invagination, Lipid Sorting, and Scission, Cell, vol.142, issue.4, pp.507-510, 2010.
DOI : 10.1016/j.cell.2010.08.007

R. Kabeche, S. Baldissard, J. Hammond, L. Howard, and J. Moseley, The filament-forming protein Pil1 assembles linear eisosomes in fission yeast, Molecular Biology of the Cell, vol.22, issue.21, pp.4059-4067, 2011.
DOI : 10.1091/mbc.E11-07-0605

H. Kaiser, A. Orlowski, T. Rog, T. Nyholm, W. Chai et al., Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching, Proceedings of the National Academy of Sciences, vol.108, issue.40, pp.16628-16633, 2011.
DOI : 10.1073/pnas.1103742108

M. Kaksonen, C. Toret, and D. Drubin, Harnessing actin dynamics for clathrin-mediated endocytosis, Nature Reviews Molecular Cell Biology, vol.84, issue.6, pp.404-414, 2006.
DOI : 10.1038/nrm1940

Y. Kamada, Y. Fujioka, N. Suzuki, F. Inagaki, S. Wullschleger et al., Tor2 Directly Phosphorylates the AGC Kinase Ypk2 To Regulate Actin Polarization, Molecular and Cellular Biology, vol.25, issue.16, pp.7239-7248, 2005.
DOI : 10.1128/MCB.25.16.7239-7248.2005

C. Kamble, S. Jain, E. Murphy, and K. Kim, Requirements of Slm proteins for proper eisosome organization, endocytic trafficking and recycling in the yeast Saccharomyces cerevisiae, Journal of Biosciences, vol.279, issue.1, pp.79-96, 2011.
DOI : 10.1007/s12038-011-9018-0

L. Karotki, J. Huiskonen, C. Stefan, N. Ziolkowska, R. Roth et al., Eisosome proteins assemble into a membrane scaffold, The Journal of Cell Biology, vol.295, issue.5, pp.889-902, 2011.
DOI : 10.1038/nsmb.2080

A. Kusumi, C. Nakada, K. Ritchie, K. Murase, K. Suzuki et al., Paradigm Shift of the Plasma Membrane Concept from the Two-Dimensional Continuum Fluid to the Partitioned Fluid: High-Speed Single-Molecule Tracking of Membrane Molecules, Annual Review of Biophysics and Biomolecular Structure, vol.34, issue.1, pp.351-378, 2005.
DOI : 10.1146/annurev.biophys.34.040204.144637

A. Kusumi, K. Suzuki, R. Kasai, K. Ritchie, and T. Fujiwara, Hierarchical mesoscale domain organization of the plasma membrane, Trends in Biochemical Sciences, vol.36, issue.11, pp.604-615, 2011.
DOI : 10.1016/j.tibs.2011.08.001

A. Lagorce, N. Hauser, D. Labourdette, C. Rodriguez, H. Martin-yken et al., Genome-wide Analysis of the Response to Cell Wall Mutations in the Yeast Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.278, issue.22, pp.20345-20357, 2003.
DOI : 10.1074/jbc.M211604200

E. Lauwers and A. B. , Association of Yeast Transporters with Detergent-Resistant Membranes Correlates with Their Cell-Surface Location, Traffic, vol.24, issue.8, pp.1045-1059, 2006.
DOI : 10.1111/j.1600-0854.2006.00445.x

E. London and D. Brown, Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts), Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1508, issue.1-2, pp.182-195, 2000.
DOI : 10.1016/S0304-4157(00)00007-1

D. Lopez and R. Kolter, Functional microdomains in bacterial membranes, Genes & Development, vol.24, issue.17, pp.1893-1902, 2010.
DOI : 10.1101/gad.1945010

G. Luo, A. Gruhler, Y. Liu, O. Jensen, and R. Dickson, The Sphingolipid Long-chain Base-Pkh1/2-Ypk1/2 Signaling Pathway Regulates Eisosome Assembly and Turnover, Journal of Biological Chemistry, vol.283, issue.16, pp.10433-10444, 2008.
DOI : 10.1074/jbc.M709972200

K. Malinska, J. Malinsky, M. Opekarova, and W. Tanner, Visualization of Protein Compartmentation within the Plasma Membrane of Living Yeast Cells, Molecular Biology of the Cell, vol.14, issue.11, pp.4427-4436, 2003.
DOI : 10.1091/mbc.E03-04-0221

K. Malinska, J. Malinsky, M. Opekarova, and W. Tanner, Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells, Journal of Cell Science, vol.117, issue.25, pp.6031-6041, 2004.
DOI : 10.1242/jcs.01493

V. Markin, Lateral organization of membranes and cell shapes, Biophysical Journal, vol.36, issue.1, pp.1-19, 1981.
DOI : 10.1016/S0006-3495(81)84713-3

K. Matsumoto, J. Kusaka, A. Nishibori, and H. Hara, Lipid domains in bacterial membranes, Molecular Microbiology, vol.175, issue.5, pp.1110-1117, 2006.
DOI : 10.1074/jbc.M310183200

S. Mclaughlin and D. Murray, Plasma membrane phosphoinositide organization by protein electrostatics, Nature, vol.27, issue.7068, pp.605-611, 2005.
DOI : 10.1038/nature04398

H. Moor and K. Muhlethaler, FINE STRUCTURE IN FROZEN-ETCHED YEAST CELLS, The Journal of Cell Biology, vol.17, issue.3, pp.609-628, 1963.
DOI : 10.1083/jcb.17.3.609

K. Moreira, T. Walther, P. Aguilar, and P. Walter, Pil1 Controls Eisosome Biogenesis, Molecular Biology of the Cell, vol.20, issue.3, pp.809-818, 2009.
DOI : 10.1091/mbc.E08-03-0313

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633383

O. Mouritsen and M. Bloom, Mattress model of lipid-protein interactions in membranes, Biophysical Journal, vol.46, issue.2, pp.141-153, 1984.
DOI : 10.1016/S0006-3495(84)84007-2

N. Mueller, R. Wedlich-soldner, and F. Spira, From mosaic to patchwork: Matching lipids and proteins in membrane organization, Molecular Membrane Biology, vol.18, issue.1, 2012.
DOI : 10.1083/jcb.200404100

J. Mulholland, D. Preuss, A. Moon, A. Wong, D. Drubin et al., Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane, The Journal of Cell Biology, vol.125, issue.2, pp.381-391, 1994.
DOI : 10.1083/jcb.125.2.381

S. Munro, Lipid Rafts, Cell, vol.115, issue.4, pp.377-388, 2003.
DOI : 10.1016/S0092-8674(03)00882-1

E. Murphy, J. Boxberger, R. Colvin, S. Lee, G. Zahn et al., Pil1, an eisosome organizer, plays an important role in the recruitment of synaptojanins and amphiphysins to facilitate receptor-mediated endocytosis in yeast, European Journal of Cell Biology, vol.90, issue.10, pp.825-833, 2011.
DOI : 10.1016/j.ejcb.2011.06.006

K. Nakano, T. Yamamoto, T. Kishimoto, T. Noji, and K. Tanaka, Protein Kinases Fpk1p and Fpk2p are Novel Regulators of Phospholipid Asymmetry, Molecular Biology of the Cell, vol.19, issue.4, pp.1783-1797, 2008.
DOI : 10.1091/mbc.E07-07-0646

B. Niles, H. Mogri, A. Hill, A. Vlahakis, and T. Powers, Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2, Proceedings of the National Academy of Sciences, vol.109, issue.5, pp.1536-1541, 2012.
DOI : 10.1073/pnas.1117563109

Y. Oh and E. Bi, Septin structure and function in yeast and beyond, Trends in Cell Biology, vol.21, issue.3, pp.141-148, 2011.
DOI : 10.1016/j.tcb.2010.11.006

D. Okuzaki, W. Satake, A. Hirata, and H. Nojima, Fission yeast meu14+ is required for proper nuclear division and accurate forespore membrane formation during meiosis II, Journal of Cell Science, vol.116, issue.13, pp.2721-2735, 2003.
DOI : 10.1242/jcs.00496

A. Olivera-couto, M. Grana, L. Harispe, and P. Aguilar, The eisosome core is composed of BAR domain proteins, Molecular Biology of the Cell, vol.22, issue.13, pp.2360-2372, 2011.
DOI : 10.1091/mbc.E10-12-1021

URL : https://hal.archives-ouvertes.fr/pasteur-00685065

M. Penalva, J. Tilburn, E. Bignell, H. Arst, and . Jr, Ambient pH gene regulation in fungi: making connections, Trends in Microbiology, vol.16, issue.6, pp.291-300, 2008.
DOI : 10.1016/j.tim.2008.03.006

J. Poveda, A. Fernandez, J. Encinar, and J. Gonzalez-ros, Protein-promoted membrane domains, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.7-8, pp.1583-1590, 2008.
DOI : 10.1016/j.bbamem.2008.01.021

D. Prosser, T. Drivas, L. Maldonado-baez, and B. Wendland, Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin, The Journal of Cell Biology, vol.114, issue.4, pp.657-671, 2011.
DOI : 10.1242/jcs.079038

B. Rankin, G. Moneron, C. Wurm, J. Nelson, A. Walter et al., Nanoscopy in a Living Multicellular Organism Expressing GFP, Biophysical Journal, vol.100, issue.12, pp.63-65, 2011.
DOI : 10.1016/j.bpj.2011.05.020

P. Reijnst, A. Walther, and J. Wendland, Dual-colour fluorescence microscopy using yEmCherry-/GFP-tagging of eisosome components Pil1 and Lsp1 in Candida albicans, Yeast, vol.9, issue.4, pp.331-338, 2011.
DOI : 10.1002/yea.1841

J. Robinson and M. Karnovsky, Evaluation of the polyene antibiotic filipin as a cytochemical probe for membrane cholesterol., Journal of Histochemistry & Cytochemistry, vol.28, issue.2, pp.161-168, 1980.
DOI : 10.1177/28.2.6766487

F. Roelants, P. Torrance, N. Bezman, and J. Thorner, Pkh1 and Pkh2 Differentially Phosphorylate and Activate Ypk1 and Ykr2 and Define Protein Kinase Modules Required for Maintenance of Cell Wall Integrity, Molecular Biology of the Cell, vol.13, issue.9, pp.3005-3028, 2002.
DOI : 10.1091/mbc.E02-04-0201

F. Roelants, A. Baltz, A. Trott, S. Fereres, and J. Thorner, A protein kinase network regulates the function of aminophospholipid flippases, Proceedings of the National Academy of Sciences, vol.107, issue.1, pp.34-39, 2010.
DOI : 10.1073/pnas.0912497106

A. Roux, D. Cuvelier, P. Nassoy, J. Prost, P. Bassereau et al., Role of curvature and phase transition in lipid sorting and fission of membrane tubules, The EMBO Journal, vol.71, issue.8, pp.1537-1545, 2005.
DOI : 10.1038/sj.emboj.7600631

R. Schroeder, S. Ahmed, Y. Zhu, E. London, and D. Brown, Cholesterol and Sphingolipid Enhance the Triton X-100 Insolubility of Glycosylphosphatidylinositol-anchored Proteins by Promoting the Formation of Detergent-insoluble Ordered Membrane Domains, Journal of Biological Chemistry, vol.273, issue.2, pp.1150-1157, 1998.
DOI : 10.1074/jbc.273.2.1150

S. Schuck, M. Honsho, K. Ekroos, A. Shevchenko, and K. Simons, Resistance of cell membranes to different detergents, Proceedings of the National Academy of Sciences, vol.100, issue.10, pp.5795-5800, 2003.
DOI : 10.1073/pnas.0631579100

S. Seger, R. Rischatsch, and P. Philippsen, Formation and stability of eisosomes in the filamentous fungus Ashbya gossypii, Journal of Cell Science, vol.124, issue.10, pp.1629-1634, 2011.
DOI : 10.1242/jcs.082487

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.387, issue.6633, pp.569-572, 1997.
DOI : 10.1038/42408

K. Simons, S. J. Sivadon, P. Peypouquet, M. Doignon, F. Aigle et al., Membrane organization and lipid rafts Cloning of the multicopy suppressor gene SUR7: evidence for a functional relationship between the yeast actin-binding protein Rvs167 and a putative membranous protein, Cold Spring Harb Perspect Biol Yeast, vol.3, issue.13, pp.747-761, 1997.

H. Snaith, J. Thompson, J. Yates, and K. Sawin, Characterization of Mug33 reveals complementary roles for actin cable-dependent transport and exocyst regulators in fission yeast exocytosis, Journal of Cell Science, vol.124, issue.13, pp.2187-2199, 2011.
DOI : 10.1242/jcs.084038

B. Sorre, A. Callan-jones, J. Manneville, P. Nassoy, J. Joanny et al., Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins, Proceedings of the National Academy of Sciences, vol.106, issue.14, pp.5622-5626, 2009.
DOI : 10.1073/pnas.0811243106

URL : https://hal.archives-ouvertes.fr/hal-01002457

F. Spira, N. Mueller, G. Beck, P. Von-olshausen, J. Beig et al., Patchwork organization of the yeast plasma membrane into numerous coexisting domains, Nature Cell Biology, vol.104, issue.6, pp.640-6482887, 2009.
DOI : 10.1007/s00249-009-0501-6

E. Streiblova, Surface structure of yeast protoplasts, J Bacteriol, vol.95, pp.700-707, 1968.

Y. Sun, R. Taniguchi, D. Tanoue, T. Yamaji, H. Takematsu et al., Sli2 (Ypk1), a Homologue of Mammalian Protein Kinase SGK, Is a Downstream Kinase in the Sphingolipid-Mediated Signaling Pathway of Yeast, Molecular and Cellular Biology, vol.20, issue.12, pp.4411-4419, 2000.
DOI : 10.1128/MCB.20.12.4411-4419.2000

M. Tabuchi, A. Audhya, A. Parsons, C. Boone, and S. Emr, The Phosphatidylinositol 4,5-Biphosphate and TORC2 Binding Proteins Slm1 and Slm2 Function in Sphingolipid Regulation, Molecular and Cellular Biology, vol.26, issue.15, pp.5861-5875, 2006.
DOI : 10.1128/MCB.02403-05

B. Tanos and E. Rodriguez-boulan, The epithelial polarity program: machineries involved and their hijacking by cancer, Oncogene, vol.10, issue.55, pp.6939-6957, 2008.
DOI : 10.1083/jcb.200502055

J. Valdez-taubas and H. Pelham, Slow Diffusion of Proteins in the Yeast Plasma Membrane Allows Polarity to Be Maintained by Endocytic Cycling, Current Biology, vol.13, issue.18, pp.1636-1640, 2003.
DOI : 10.1016/j.cub.2003.09.001

G. Van-meer, E. Stelzer, R. Wijnaendts-van-resandt, and K. Simons, Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells, The Journal of Cell Biology, vol.105, issue.4, pp.1623-1635, 1987.
DOI : 10.1083/jcb.105.4.1623

I. Vangelatos, K. Roumelioti, C. Gournas, T. Suarez, C. Scazzocchio et al., Eisosome Organization in the Filamentous AscomyceteAspergillus nidulans, Eukaryotic Cell, vol.9, issue.10, pp.1441-1454, 2010.
DOI : 10.1128/EC.00087-10

T. Walther, J. Brickner, P. Aguilar, S. Bernales, C. Pantoja et al., Eisosomes mark static sites of endocytosis, Nature, vol.151, issue.7079, pp.998-1003, 2006.
DOI : 10.1038/nature04472

T. Walther, P. Aguilar, F. Frohlich, F. Chu, K. Moreira et al., Pkh-kinases control eisosome assembly and organization, The EMBO Journal, vol.279, issue.24, pp.4946-4955, 2007.
DOI : 10.1038/sj.emboj.7601933

H. Wang, L. Douglas, V. Aimanianda, J. Latge, and J. Konopka, The Candida albicans Sur7 Protein Is Needed for Proper Synthesis of the Fibrillar Component of the Cell Wall That Confers Strength, Eukaryotic Cell, vol.10, issue.1, pp.72-80, 2011.
DOI : 10.1128/EC.00167-10

T. Xu, C. Shively, J. R. Eckwahl, M. Dobry, C. Song et al., A Profile of Differentially Abundant Proteins at the Yeast Cell Periphery during Pseudohyphal Growth, Journal of Biological Chemistry, vol.285, issue.20, pp.15476-15488, 2010.
DOI : 10.1074/jbc.M110.114926

M. Young, T. Karpova, B. Brugger, D. Moschenross, G. Wang et al., The Sur7p Family Defines Novel Cortical Domains in Saccharomyces cerevisiae, Affects Sphingolipid Metabolism, and Is Involved in Sporulation, Molecular and Cellular Biology, vol.22, issue.3, pp.927-934, 2002.
DOI : 10.1128/MCB.22.3.927-934.2002

J. Yu, J. Mendrola, A. Audhya, S. Singh, D. Keleti et al., Genome-Wide Analysis of Membrane Targeting by S. cerevisiae Pleckstrin Homology Domains, Molecular Cell, vol.13, issue.5, pp.677-688, 2004.
DOI : 10.1016/S1097-2765(04)00083-8

X. Zhang, R. Lester, and R. Dickson, Pil1p and Lsp1p Negatively Regulate the 3-Phosphoinositide-dependent Protein Kinase-like Kinase Pkh1p and Downstream Signaling Pathways Pkc1p and Ypk1p, Journal of Biological Chemistry, vol.279, issue.21, pp.22030-22038, 2004.
DOI : 10.1074/jbc.M400299200

J. Zimmerberg and M. Kozlov, How proteins produce cellular membrane curvature, Nature Reviews Molecular Cell Biology, vol.71, issue.1, pp.9-19, 2006.
DOI : 10.1038/nrm1784

N. Ziolkowska, L. Karotki, M. Rehman, J. Huiskonen, and T. Walther, Eisosome-driven plasma membrane organization is mediated by BAR domains, Nature Structural & Molecular Biology, vol.18, issue.7, pp.854-856, 2011.
DOI : 10.1016/j.semcdb.2010.01.010