L. H. Miller, D. I. Baruch, K. Marsh, and O. K. Doumbo, The pathogenic basis of malaria, Nature, vol.415, issue.6872, pp.673-679, 2002.
DOI : 10.1038/415673a

K. W. Deitsch, S. A. Lukehart, and J. Stringer, Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens, Nature Reviews Microbiology, vol.165, issue.7, pp.493-503, 2009.
DOI : 10.1038/280361a0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676878

T. Chookajorn, Epigenetic memory at malaria virulence genes, Proc. Natl Acad. Sci. USA, pp.899-902, 2007.
DOI : 10.1073/pnas.0609084103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764221

J. J. Lopez-rubio, 59 flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites, Mol. Microbiol, vol.66, pp.1296-1305, 2007.

J. J. Lopez-rubio, L. Mancio-silva, and A. Scherf, Genome-wide Analysis of Heterochromatin Associates Clonally Variant Gene Regulation with Perinuclear Repressive Centers in Malaria Parasites, Cell Host & Microbe, vol.5, issue.2, pp.179-190, 2009.
DOI : 10.1016/j.chom.2008.12.012

A. M. Salcedo-amaya, Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum, Proc. Natl Acad. Sci. USA, pp.9655-9660, 2009.
DOI : 10.1073/pnas.0902515106

C. J. Tonkin, Sir2 Paralogues Cooperate to Regulate Virulence Genes and Antigenic Variation in Plasmodium falciparum, PLoS Biology, vol.431, issue.4, p.84, 2009.
DOI : 10.1371/journal.pbio.1000084.sd001

M. T. Duraisingh, Heterochromatin Silencing and Locus Repositioning Linked to Regulation of Virulence Genes in Plasmodium falciparum, Cell, vol.121, issue.1, pp.13-24, 2005.
DOI : 10.1016/j.cell.2005.01.036

L. Cui, Q. Fan, and J. Miao, Histone lysine methyltransferases and demethylases in Plasmodium falciparum, International Journal for Parasitology, vol.38, issue.10, pp.1083-1097, 2008.
DOI : 10.1016/j.ijpara.2008.01.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566933

J. C. Volz, PfSET10, a Plasmodium falciparum Methyltransferase, Maintains the Active var Gene in a Poised State during Parasite Division, Cell Host & Microbe, vol.11, issue.1, pp.7-18, 2012.
DOI : 10.1016/j.chom.2011.11.011

L. Aravind, S. Abhiman, and L. M. Iyer, Natural History of the Eukaryotic Chromatin Protein Methylation System, Prog. Mol. Biol. Transl. Sci, vol.101, pp.105-176, 2011.
DOI : 10.1016/B978-0-12-387685-0.00004-4

L. Joergensen, Surface Co-Expression of Two Different PfEMP1 Antigens on Single Plasmodium falciparum-Infected Erythrocytes Facilitates Binding to ICAM1 and PECAM1, PLoS Pathogens, vol.117, issue.9, p.1001083, 2010.
DOI : 10.1371/journal.ppat.1001083.s009

C. I. Newbold, R. Pinches, D. J. Roberts, and K. Marsh, Plasmodium falciparum: The human agglutinating antibody response to the infected red cell surface is predominantly variant specific, Experimental Parasitology, vol.75, issue.3, pp.281-292, 1992.
DOI : 10.1016/0014-4894(92)90213-T

M. J. Carrozza, Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription, Cell, vol.123, issue.4, pp.581-592, 2005.
DOI : 10.1016/j.cell.2005.10.023

K. O. Kizer, A Novel Domain in Set2 Mediates RNA Polymerase II Interaction and Couples Histone H3 K36 Methylation with Transcript Elongation, Molecular and Cellular Biology, vol.25, issue.8, pp.3305-3316, 2005.
DOI : 10.1128/MCB.25.8.3305-3316.2005

A. Barski, High-Resolution Profiling of Histone Methylations in the Human Genome, Cell, vol.129, issue.4, pp.823-837, 2007.
DOI : 10.1016/j.cell.2007.05.009

C. Epp, F. Li, C. A. Howitt, T. Chookajorn, and K. W. Deitsch, Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum, RNA, vol.15, issue.1, pp.116-127, 2009.
DOI : 10.1261/rna.1080109

A. Rechtsteiner, The Histone H3K36 Methyltransferase MES-4 Acts Epigenetically to Transmit the Memory of Germline Gene Expression to Progeny, PLoS Genetics, vol.4, issue.9, p.1001091, 2010.
DOI : 10.1371/journal.pgen.1001091.s010

Y. Tanaka, Dual Function of Histone H3 Lysine 36 Methyltransferase ASH1 in Regulation of Hox Gene Expression, PLoS ONE, vol.471, issue.11, p.28171, 2011.
DOI : 10.1371/journal.pone.0028171.s008

S. F. Wu, H. Zhang, and B. Cairns, Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm, Genome Research, vol.21, issue.4, pp.578-589, 2011.
DOI : 10.1101/gr.113167.110

S. Chantalat, Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin, Genome Research, vol.21, issue.9, pp.1426-1437, 2011.
DOI : 10.1101/gr.118091.110

S. Venkatesh, Set2 methylation of histone H3 lysine???36 suppresses histone exchange on transcribed genes, Nature, vol.442, issue.7416, pp.452-455, 2012.
DOI : 10.1038/nature11326

T. Kim, Z. Xu, S. Clauder-munster, L. M. Steinmetz, and S. Buratowski, Set3 HDAC Mediates Effects of Overlapping Noncoding Transcription on Gene Induction Kinetics, Cell, vol.150, issue.6, pp.1158-1169, 2012.
DOI : 10.1016/j.cell.2012.08.016

F. J. Van-werven, Transcription of Two Long Noncoding RNAs Mediates Mating-Type Control of Gametogenesis in Budding Yeast, Cell, vol.150, issue.6, pp.1170-1181, 2012.
DOI : 10.1016/j.cell.2012.06.049

URL : https://hal.archives-ouvertes.fr/hal-00877439

S. C. Soubes, T. E. Wellems, and L. H. Miller, Plasmodium falciparum:A High Proportion of Parasites from a Population of the Dd2 Strain Are Able to Invade Erythrocytes by an Alternative Pathway, Experimental Parasitology, vol.86, issue.1, pp.79-83, 1997.
DOI : 10.1006/expr.1997.4153

L. Jiang, Epigenetic control of the variable expression of a Plasmodium falciparum receptor protein for erythrocyte invasion, Proc. Natl Acad. Sci. USA, pp.2224-2229, 2010.
DOI : 10.1073/pnas.0913396107

J. A. Chan, Targets of antibodies against Plasmodium falciparum???infected erythrocytes in malaria immunity, Journal of Clinical Investigation, vol.122, issue.9, pp.3227-3238, 2012.
DOI : 10.1172/JCI62182DS1

D. Walliker, Genetic analysis of the human malaria parasite Plasmodium falciparum, Science, vol.236, issue.4809, pp.1661-1666, 1987.
DOI : 10.1126/science.3299700

T. E. Wellems, Chromosome size variation occurs in cloned Plasmodium falciparum on in vitro cultivation, Rev. Bras. Genet, vol.11, pp.813-825, 1988.

W. Trager and J. B. Jensen, Human malaria parasites in continuous culture, Science, vol.193, issue.4254, pp.673-675, 1976.
DOI : 10.1126/science.781840

M. T. Duraisingh, T. Triglia, and A. Cowman, Negative selection of Plasmodium falciparum reveals targeted gene deletion by double crossover recombination, International Journal for Parasitology, vol.32, issue.1, pp.81-89, 2002.
DOI : 10.1016/S0020-7519(01)00345-9

H. Jiang, High recombination rates and hotspots in a Plasmodium falciparum genetic cross, Genome Biology, vol.12, issue.4, p.33, 2011.
DOI : 10.1093/biostatistics/4.2.249

A. Salanti, Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria, Molecular Microbiology, vol.236, issue.1, pp.179-191, 2003.
DOI : 10.1046/j.1365-2958.2003.03570.x

P. Srinivasan, Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion, Proc. Natl Acad. Sci. USA, pp.13275-13280, 2011.
DOI : 10.1073/pnas.1110303108

K. Tahlan, SQ109 Targets MmpL3, a Membrane Transporter of Trehalose Monomycolate Involved in Mycolic Acid Donation to the Cell Wall Core of Mycobacterium tuberculosis, Antimicrobial Agents and Chemotherapy, vol.56, issue.4, pp.1797-1809, 2012.
DOI : 10.1128/AAC.05708-11