M. Alphey, M. Gabrielsen, E. Micossi, G. Leonard, S. Mcsweeney et al., Tryparedoxins from Crithidia fasciculata and Trypanosoma brucei: PHOTOREDUCTION OF THE REDOX DISULFIDE USING SYNCHROTRON RADIATION AND EVIDENCE FOR A CONFORMATIONAL SWITCH IMPLICATED IN FUNCTION, Journal of Biological Chemistry, vol.278, issue.28, pp.25919-25925, 2003.
DOI : 10.1074/jbc.M301526200

D. Arias, M. Cabeza, E. Erben, P. Carranza, H. Lujan et al., Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp., Free Radical Biology and Medicine, vol.50, issue.1, pp.37-46, 2011.
DOI : 10.1016/j.freeradbiomed.2010.10.695

P. Askelö-f, K. Axelsson, S. Eriksson, and B. Mannervik, Mechanism of action of enzymes catalyzing thiol-disulfide interchange. Thioltransferases rather than transhydrogenases, FEBS Letters, vol.77, issue.3, pp.263-267, 1974.
DOI : 10.1016/0014-5793(74)80068-2

H. Atkinson and P. Babbitt, An Atlas of the Thioredoxin Fold Class Reveals the Complexity of Function-Enabling Adaptations, PLoS Computational Biology, vol.362, issue.1, p.1000541, 2009.
DOI : 10.1371/journal.pcbi.1000541.s010

S. Beer, E. Taylor, S. Brown, C. Dahm, N. Costa et al., Glutaredoxin 2 Catalyzes the Reversible Oxidation and Glutathionylation of Mitochondrial Membrane Thiol Proteins: IMPLICATIONS FOR MITOCHONDRIAL REDOX REGULATION AND ANTIOXIDANT DEFENSE, Journal of Biological Chemistry, vol.279, issue.46, pp.47939-47951, 2004.
DOI : 10.1074/jbc.M408011200

C. Berndt, C. Hudemann, E. Hanschmann, R. Axelsson, A. Holmgren et al., How Does Iron???Sulfur Cluster Coordination Regulate the Activity of Human Glutaredoxin 2?, Antioxidants & Redox Signaling, vol.9, issue.1, pp.151-157, 2007.
DOI : 10.1089/ars.2007.9.151

A. Bocedi, K. Dawood, R. Fabrini, G. Federici, L. Gradoni et al., Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites, The FASEB Journal, vol.24, issue.4, pp.1035-1042, 2010.
DOI : 10.1096/fj.09-146407

H. Budde, L. Flohé, H. Hecht, B. Hofmann, M. Stehr et al., Kinetics and Redox-Sensitive Oligomerisation Reveal Negative Subunit Cooperativity in Tryparedoxin Peroxidase of Trypanosoma brucei brucei, Biological Chemistry, vol.384, issue.4, pp.619-633, 2003.
DOI : 10.1515/BC.2003.069

J. Bushweller, F. Aslund, K. Wü-thrich, and A. Holmgren, Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14.fwdarw.S) and its mixed disulfide with glutathione, Biochemistry, vol.31, issue.38, pp.9288-9293, 1992.
DOI : 10.1021/bi00153a023

J. Bushweller, M. Billeter, A. Holmgren, W. , and K. , The Nuclear Magnetic Resonance Solution Structure of the Mixed Disulfide between Escherichia coli Glutaredoxin(C14S) and Glutathione, Journal of Molecular Biology, vol.235, issue.5, pp.1585-1597, 1994.
DOI : 10.1006/jmbi.1994.1108

C. Camaschella, A. Campanella, D. Falco, L. Boschetto, L. Merlini et al., The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload, Blood, vol.110, issue.4, pp.1353-1358, 2007.
DOI : 10.1182/blood-2007-02-072520

S. Ceylan, V. Seidel, N. Ziebart, C. Berndt, N. Dirdjaja et al., The Dithiol Glutaredoxins of African Trypanosomes Have Distinct Roles and Are Closely Linked to the Unique Trypanothione Metabolism, Journal of Biological Chemistry, vol.285, issue.45, pp.35224-35237, 2010.
DOI : 10.1074/jbc.M110.165860

N. Cheng, J. Liu, A. Brock, R. Nelson, and K. Hirschi, AtGRXcp, an Arabidopsis Chloroplastic Glutaredoxin, Is Critical for Protection against Protein Oxidative Damage, Journal of Biological Chemistry, vol.281, issue.36, pp.26280-26288, 2006.
DOI : 10.1074/jbc.M601354200

C. Clayton and M. Shapira, Post-transcriptional regulation of gene expression in trypanosomes and leishmanias, Molecular and Biochemical Parasitology, vol.156, issue.2, pp.93-101, 2007.
DOI : 10.1016/j.molbiopara.2007.07.007

M. Comini, R. Krauth-siegel, and L. Flohé, Depletion of the thioredoxin homologue tryparedoxin impairs antioxidative defence in African trypanosomes, Biochemical Journal, vol.402, issue.1, pp.43-49, 2007.
DOI : 10.1042/BJ20061341

URL : https://hal.archives-ouvertes.fr/hal-00478658

M. Comini, J. Rettig, N. Dirdjaja, E. Hanschmann, C. Berndt et al., Monothiol Glutaredoxin-1 Is an Essential Iron-Sulfur Protein in the Mitochondrion of African Trypanosomes, Journal of Biological Chemistry, vol.283, issue.41, pp.27785-27798, 2008.
DOI : 10.1074/jbc.M802010200

J. Couturier, E. Strö-her, A. Albetel, T. Roret, M. Muthuramalingam et al., Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins, Journal of Biological Chemistry, vol.286, issue.31, pp.27515-27527, 2011.
DOI : 10.1074/jbc.M111.228726

M. Deponte, K. Becker, and S. Rahlfs, Plasmodium falciparum glutaredoxin-like proteins, Biological Chemistry, vol.386, issue.1, pp.33-40, 2005.
DOI : 10.1515/BC.2005.005

K. Discola, M. De-oliveira, R. Cussiol, J. Monteiro, G. Bárcena et al., Structural Aspects of the Distinct Biochemical Properties of Glutaredoxin 1 and Glutaredoxin 2 from Saccharomyces cerevisiae, Journal of Molecular Biology, vol.385, issue.3, pp.889-901, 2009.
DOI : 10.1016/j.jmb.2008.10.055

M. Dormeyer, N. Reckenfelderbaumer, H. Lü-demann, K. Siegel, and R. , Trypanothione-dependent Synthesis of Deoxyribonucleotides by Trypanosoma brucei Ribonucleotide Reductase, Journal of Biological Chemistry, vol.276, issue.14, pp.10602-10606, 2001.
DOI : 10.1074/jbc.M010352200

F. Dufernez, C. Yernaux, D. Gerbod, C. Noël, M. Chauvenet et al., The presence of four iron-containing superoxide dismutase isozymes in Trypanosomatidae: Characterization, subcellular localization, and phylogenetic origin in Trypanosoma brucei, Free Radical Biology and Medicine, vol.40, issue.2, pp.210-225, 2006.
DOI : 10.1016/j.freeradbiomed.2005.06.021

T. Elgán, K. Berndt, and . Al, Quantifying Escherichia coli Glutaredoxin-3 Substrate Specificity Using Ligand-induced Stability, Journal of Biological Chemistry, vol.283, issue.47, pp.32839-32847, 2008.
DOI : 10.1074/jbc.M804019200

A. Fairlamb and A. Cerami, Metabolism and Functions of Trypanothione in the Kinetoplastida, Annual Review of Microbiology, vol.46, issue.1, pp.695-729, 1992.
DOI : 10.1146/annurev.mi.46.100192.003403

A. Fernandes, M. Fladvad, C. Berndt, C. Andrésen, C. Lillig et al., A Novel Monothiol Glutaredoxin (Grx4) from Escherichia coli Can Serve as a Substrate for Thioredoxin Reductase, Journal of Biological Chemistry, vol.280, issue.26, pp.24544-24552, 2005.
DOI : 10.1074/jbc.M500678200

M. Filser, M. Comini, M. Molina-navarro, N. Dirdjaja, E. Herrero et al., Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1, Biological Chemistry, vol.389, issue.1, pp.21-32, 2008.
DOI : 10.1515/BC.2007.147

M. Fladvad, M. Bellanda, A. Fernandes, S. Mammi, A. Vlamis-gardikas et al., Molecular Mapping of Functionalities in the Solution Structure of Reduced Grx4, a Monothiol Glutaredoxin from Escherichia coli, Journal of Biological Chemistry, vol.280, issue.26, pp.24553-24561, 2005.
DOI : 10.1074/jbc.M500679200

S. Gerdes, M. Scholle, J. Campbell, G. Balázsi, E. Ravasz et al., Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655, Journal of Bacteriology, vol.185, issue.19, pp.5673-5684, 2003.
DOI : 10.1128/JB.185.19.5673-5684.2003

P. Guerry and T. Herrmann, Comprehensive Automation for NMR Structure Determination of Proteins, Methods Mol Biol, vol.831, pp.429-451, 2012.
DOI : 10.1007/978-1-61779-480-3_22

URL : https://hal.archives-ouvertes.fr/hal-00955857

E. Herrero and M. De-la-torre-ruiz, Monothiol glutaredoxins: a common domain for multiple functions, Cellular and Molecular Life Sciences, vol.64, issue.12, pp.1518-1530, 2007.
DOI : 10.1007/s00018-007-6554-8

H. Hillebrand, A. Schmidt, K. Siegel, and R. , A Second Class of Peroxidases Linked to the Trypanothione Metabolism, Journal of Biological Chemistry, vol.278, issue.9, pp.6809-6815, 2003.
DOI : 10.1074/jbc.M210392200

B. Hoffmann, M. Uzarska, C. Berndt, J. Godoy, P. Haunhorst et al., The Multidomain Thioredoxin-Monothiol Glutaredoxins Represent a Distinct Functional Group, Antioxidants & Redox Signaling, vol.15, issue.1, pp.19-30, 2011.
DOI : 10.1089/ars.2010.3811

A. Holmgren, Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione., Proceedings of the National Academy of Sciences, vol.73, issue.7, pp.2275-2279, 1976.
DOI : 10.1073/pnas.73.7.2275

A. Holmgren, Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide, J Biol Chem, vol.254, pp.9627-9632, 1979.

S. Indu, V. Kochat, S. Thakurela, C. Ramakrishnan, and R. Varadarajan, Conformational analysis and design of cross-strand disulfides in antiparallel ??-sheets, Proteins: Structure, Function, and Bioinformatics, vol.107, issue.Pt 11, pp.244-260, 2011.
DOI : 10.1002/prot.22878

F. Irigoín, L. Cibils, M. Comini, S. Wilkinson, L. Flohé et al., Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification, Free Radical Biology and Medicine, vol.45, issue.6, pp.733-742, 2008.
DOI : 10.1016/j.freeradbiomed.2008.05.028

T. Iwema, A. Picciocchi, D. Traore, J. Ferrer, F. Chauvat et al., Structural Basis for Delivery of the Intact [Fe2S2] Cluster by Monothiol Glutaredoxin, Biochemistry, vol.48, issue.26, pp.6041-6043, 2009.
DOI : 10.1021/bi900440m

C. Johansson, C. Lillig, and A. Holmgren, Human Mitochondrial Glutaredoxin Reduces S-Glutathionylated Proteins with High Affinity Accepting Electrons from Either Glutathione or Thioredoxin Reductase, Journal of Biological Chemistry, vol.279, issue.9, pp.7537-7543, 2004.
DOI : 10.1074/jbc.M312719200

C. Johansson, K. Kavanagh, O. Gileadi, and U. Oppermann, Reversible Sequestration of Active Site Cysteines in a 2Fe-2S-bridged Dimer Provides a Mechanism for Glutaredoxin 2 Regulation in Human Mitochondria, Journal of Biological Chemistry, vol.282, issue.5, pp.3077-3082, 2007.
DOI : 10.1074/jbc.M608179200

C. Johansson, A. Roos, S. Montano, R. Sengupta, P. Filippakopoulos et al., The crystal structure of human GLRX5: iron???sulfur cluster co-ordination, tetrameric assembly and monomer activity, Biochemical Journal, vol.252, issue.2, pp.303-311, 2011.
DOI : 10.1021/bi801859b

R. Krauth-siegel and M. Comini, Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1780, issue.11, pp.1236-1248, 2008.
DOI : 10.1016/j.bbagen.2008.03.006

R. Krauth-siegel and A. Leroux, Low-Molecular-Mass Antioxidants in Parasites, Antioxidants & Redox Signaling, vol.17, issue.4, pp.583-607, 2012.
DOI : 10.1089/ars.2011.4392

D. Lee, D. Kaur, S. Chinta, S. Rajagopalan, and J. Andersen, Inhibition of Mitochondrial Dithiol Glutaredoxin 2 May Contribute to Mitochondrial and Cellular Iron Dysregulation in Mammalian Glutathione-Depleted Dopaminergic Cells: Implications for Parkinson's Disease, Antioxidants & Redox Signaling, vol.11, issue.9, pp.2083-2094, 2009.
DOI : 10.1089/ars.2009.2489

L. Li, N. Cheng, K. Hirschi, and W. X. , chloroplastic monothiol glutaredoxin AtGRXcp, Acta Crystallographica Section D Biological Crystallography, vol.72, issue.6, pp.725-732, 2010.
DOI : 10.1107/S0907444910013119

R. Lill and U. Mü-hlenhoff, Maturation of Iron-Sulfur Proteins in Eukaryotes: Mechanisms, Connected Processes, and Diseases, Annual Review of Biochemistry, vol.77, issue.1, pp.669-700, 2008.
DOI : 10.1146/annurev.biochem.76.052705.162653

C. Lillig, C. Berndt, O. Vergnolle, M. Lö-nn, C. Hudemann et al., Characterization of human glutaredoxin 2 as iron-sulfur protein: A possible role as redox sensor, Proceedings of the National Academy of Sciences, vol.102, issue.23, pp.8168-8173, 2005.
DOI : 10.1073/pnas.0500735102

A. Lopes, T. Souto-padró-n, F. Dias, M. Gomes, G. Rodrigues et al., Trypanosomatids: Odd Organisms, Devastating Diseases, The Open Parasitology Journal, vol.4, issue.1, pp.30-59, 2010.
DOI : 10.2174/1874421401004010030

M. Lö-nn, C. Hudemann, C. Berndt, V. Cherkasov, F. Capani et al., Expression Pattern of Human Glutaredoxin 2 Isoforms: Identification and Characterization of Two Testis/Cancer Cell-Specific Isoforms, Antioxidants & Redox Signaling, vol.10, issue.3, pp.547-557, 2008.
DOI : 10.1089/ars.2007.1821

H. Lü-demann, M. Dormeyer, C. Sticherling, D. Stallmann, H. Follmann et al., tryparedoxin, a thioredoxin-like protein in African trypanosomes, FEBS Letters, vol.83, issue.3, pp.381-385, 1998.
DOI : 10.1016/S0014-5793(98)00793-5

M. Lundberg, C. Johansson, J. Chandra, M. Enoksson, G. Jacobsson et al., Cloning and Expression of a Novel Human Glutaredoxin (Grx2) with Mitochondrial and Nuclear Isoforms, Journal of Biological Chemistry, vol.276, issue.28, pp.26269-26275, 2001.
DOI : 10.1074/jbc.M011605200

M. Luo, Y. Jiang, X. Ma, Y. Tang, Y. He et al., Structural and Biochemical Characterization of Yeast Monothiol Glutaredoxin Grx6, Journal of Molecular Biology, vol.398, issue.4, pp.614-622, 2010.
DOI : 10.1016/j.jmb.2010.03.029

B. Manta, L. Fleitas, and M. Comini, Iron metabolism in pathogenic trypanosomes, pp.1-40, 2012.

B. Manta, C. Pavan, M. Sturlese, A. Medeiros, M. Crispo et al., Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: Molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity, Antioxid Redox Signal, 2013.

J. Martin, Thioredoxin ???a fold for all reasons, Structure, vol.3, issue.3, pp.245-250, 1995.
DOI : 10.1016/S0969-2126(01)00154-X

J. Melchers, N. Dirdjaja, T. Ruppert, K. Siegel, and R. , Glutathionylation of Trypanosomal Thiol Redox Proteins, Journal of Biological Chemistry, vol.282, issue.12, pp.8678-8694, 2007.
DOI : 10.1074/jbc.M608140200

N. Mesecke, A. Spang, M. Deponte, and J. Herrmann, A Novel Group of Glutaredoxins in the cis-Golgi Critical for Oxidative Stress Resistance, Molecular Biology of the Cell, vol.19, issue.6, pp.2673-2680, 2008.
DOI : 10.1091/mbc.E07-09-0896

M. Molina-navarro, C. Casas, L. Piedrafita, G. Bellí, and E. Herrero, Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria, FEBS Letters, vol.565, issue.9, pp.2273-2280, 2006.
DOI : 10.1016/j.febslet.2006.03.037

U. Muhlenhoff, S. Molik, J. Godoy, M. Uzarsk, N. Richter et al., Cytosolic Monothiol Glutaredoxins Function in Intracellular Iron Sensing and Trafficking via Their Bound Iron-Sulfur Cluster, Cell Metabolism, vol.12, issue.4, pp.373-385, 2010.
DOI : 10.1016/j.cmet.2010.08.001

URL : https://hal.archives-ouvertes.fr/hal-00630763

E. Nogoceke, D. Gommel, M. Kiess, H. Kalisz, and L. Flohé, A Unique Cascade of Oxidoreductases Catalyses Trypanothione-Mediated Peroxide Metabolism in Crithidia fasciculata, Biological Chemistry, vol.378, issue.8, pp.827-836, 1997.
DOI : 10.1515/bchm.1997.378.8.827

D. Nolan and H. Voorheis, The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase, European Journal of Biochemistry, vol.180, issue.1, pp.207-216, 1992.
DOI : 10.1016/0166-6851(81)90062-1

H. Pai, D. Starke, E. Lesnefsky, C. Hoppel, and J. Mieyal, What is the Functional Significance of the Unique Location of Glutaredoxin 1 (GRx1) in the Intermembrane Space of Mitochondria?, Antioxidants & Redox Signaling, vol.9, issue.11, pp.2027-2033, 2007.
DOI : 10.1089/ars.2007.1642

C. Piattoni, V. Blancato, H. Miglietta, A. Iglesias, and S. Guerrero, On the occurrence of thioredoxin in Trypanosoma cruzi, Acta Tropica, vol.97, issue.2, pp.151-160, 2006.
DOI : 10.1016/j.actatropica.2005.10.005

Y. Qi and N. Grishin, Structural classification of thioredoxin-like fold proteins, Proteins: Structure, Function, and Bioinformatics, vol.5, issue.2, pp.376-388, 2005.
DOI : 10.1002/prot.20329

S. Rahlfs, M. Fischer, and K. Becker, Plasmodium falciparum Possesses a Classical Glutaredoxin and a Second, Glutaredoxin-like Protein with a PICOT Homology Domain, Journal of Biological Chemistry, vol.276, issue.40, pp.37133-37140, 2001.
DOI : 10.1074/jbc.M105524200

N. Reckenfelderbä-umer, H. Lü-demann, H. Schmidt, D. Steverding, K. Siegel et al., Identification and Functional Characterization of Thioredoxin from Trypanosoma brucei brucei, Journal of Biological Chemistry, vol.275, issue.11, pp.7547-7552, 2000.
DOI : 10.1074/jbc.275.11.7547

G. Ren, D. Stephan, Z. Xu, Y. Zheng, D. Tang et al., Properties of the Thioredoxin Fold Superfamily Are Modulated by a Single Amino Acid Residue, Journal of Biological Chemistry, vol.284, issue.15, pp.10150-10159, 2009.
DOI : 10.1074/jbc.M809509200

M. Rodríguez-manzaneque, J. Tamarit, G. Bellí, R. J. Herrero, and E. , Grx5 Is a Mitochondrial Glutaredoxin Required for the Activity of Iron/Sulfur Enzymes, Molecular Biology of the Cell, vol.13, issue.4, pp.1109-1121, 2002.
DOI : 10.1091/mbc.01-10-0517

N. Rouhier, J. Couturier, M. Johnson, J. Jacquot, and . Glutaredoxins, Glutaredoxins: roles in iron homeostasis, Trends in Biochemical Sciences, vol.35, issue.1, pp.43-52, 2010.
DOI : 10.1016/j.tibs.2009.08.005

N. Rouhier, H. Unno, S. Bandyopadhyay, L. Masip, S. Kim et al., Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe-2S] cluster in poplar glutaredoxin C1, Proceedings of the National Academy of Sciences, vol.104, issue.18, pp.7379-7384, 2007.
DOI : 10.1073/pnas.0702268104

F. Sardi, B. Manta, S. Portillo-ledesma, B. Knoops, M. Comini et al., Determination of acidity and nucleophilicity in thiols by reaction with monobromobimane and fluorescence detection, Analytical Biochemistry, vol.435, issue.1, p.17, 2013.
DOI : 10.1016/j.ab.2012.12.017

URL : https://hal.archives-ouvertes.fr/pasteur-00847102

T. Schlecker, A. Schmidt, N. Dirdjaja, F. Voncken, C. Clayton et al., Substrate Specificity, Localization, and Essential Role of the Glutathione Peroxidase-type Tryparedoxin Peroxidases in Trypanosoma brucei, Journal of Biological Chemistry, vol.280, issue.15, pp.14385-14394, 2005.
DOI : 10.1074/jbc.M413338200

H. Schmidt and R. Krauth-siegel, Functional and Physicochemical Characterization of the Thioredoxin System in Trypanosoma brucei, Journal of Biological Chemistry, vol.278, issue.47, pp.46329-46336, 2003.
DOI : 10.1074/jbc.M305338200

A. Schmidt, C. Clayton, K. Siegel, and R. , Silencing of the thioredoxin gene in Trypanosoma brucei brucei, Molecular and Biochemical Parasitology, vol.125, issue.1-2, pp.207-210, 2002.
DOI : 10.1016/S0166-6851(02)00215-3

O. Smíd, E. Horáková, V. Vilímová, I. Hrdy, R. Cammack et al., Knock-downs of Iron-Sulfur Cluster Assembly Proteins IscS and IscU Down-regulate the Active Mitochondrion of Procyclic Trypanosoma brucei, Journal of Biological Chemistry, vol.281, issue.39, pp.28679-28686, 2006.
DOI : 10.1074/jbc.M513781200

J. Tamarit, G. Belli, E. Cabiscol, E. Herrero, and R. J. , Biochemical Characterization of Yeast Mitochondrial Grx5 Monothiol Glutaredoxin, Journal of Biological Chemistry, vol.278, issue.28, pp.25745-25751, 2003.
DOI : 10.1074/jbc.M303477200

M. Taylor and J. Kelly, Iron metabolism in trypanosomatids, and its crucial role in infection, Parasitology, vol.1763, issue.06, pp.899-917, 2010.
DOI : 10.1126/science.1176333

E. Tetaud, C. Giroud, A. Prescott, D. Parkin, D. Baltz et al., Molecular characterisation of mitochondrial and cytosolic trypanothione-dependent tryparedoxin peroxidases in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.116, issue.2, pp.171-183, 2001.
DOI : 10.1016/S0166-6851(01)00320-6

J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific 14

F. Vilella, R. Alves, M. Rodríguez-manzaneque, G. Bellí, S. Swaminathan et al., Evolution and Cellular Function of Monothiol Glutaredoxins: Involvement in Iron-Sulphur Cluster Assembly, Comparative and Functional Genomics, vol.5, issue.4, pp.328-341, 2004.
DOI : 10.1002/cfg.406

R. Wingert, J. Galloway, B. Barut, H. Foott, P. Fraenkel et al., Deficiency of glutaredoxin 5 reveals Fe???S clusters are required for vertebrate haem synthesis, Nature, vol.124, issue.7053, pp.1035-1039, 2000.
DOI : 10.1073/pnas.232392299

H. Ye, S. Jeong, M. Ghosh, G. Kovtunovych, L. Silvestri et al., Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts, Journal of Clinical Investigation, vol.120, issue.5, pp.1749-1761, 2010.
DOI : 10.1172/JCI40372DS1

N. Yeung, B. Gold, N. Liu, R. Prathapam, H. Sterling et al., Monothiol Glutaredoxin GrxD Forms Homodimeric and Heterodimeric FeS Cluster Containing Complexes, Biochemistry, vol.50, issue.41, pp.8957-8969, 2011.
DOI : 10.1021/bi2008883

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236052