J. Campbell, J. Cronan, and J. , Bacterial Fatty Acid Biosynthesis: Targets for Antibacterial Drug Discovery, Annual Review of Microbiology, vol.55, issue.1, pp.305-332, 2011.
DOI : 10.1146/annurev.micro.55.1.305

Y. Zhang and C. Rock, Membrane lipid homeostasis in bacteria, Nature Reviews Microbiology, vol.50, issue.3, pp.222-233, 2008.
DOI : 10.1038/nrmicro1839

P. Overath, G. Pauli, and H. Schairer, Fatty Acid Degradation in Escherichia coli, European Journal of Biochemistry, vol.58, issue.4, pp.559-574, 1969.
DOI : 10.1111/j.1432-1033.1969.tb19644.x

C. Dirusso and W. Nunn, Cloning and characterization of a gene (fadR) involved in regulation of fatty acid metabolism in Escherichia coli, J Bacteriol, vol.161, pp.583-588, 1985.

M. Henry, J. Cronan, and J. , Escherichia coli transcription factor that both activates fatty acid synthesis and represses fatty acid degradation, Journal of Molecular Biology, vol.222, issue.4, pp.843-849, 1991.
DOI : 10.1016/0022-2836(91)90574-P

M. Henry, J. Cronan, and . Jr, A new mechanism of transcriptional regulation: Release of an activator triggered by small molecule binding, Cell, vol.70, issue.4, pp.671-67, 1992.
DOI : 10.1016/0092-8674(92)90435-F

Y. Lu, Y. Zhang, and C. Rock, Product diversity and regulation of type II fatty acid synthases, Biochemistry and Cell Biology, vol.82, issue.1, pp.145-155, 2004.
DOI : 10.1139/o03-076

J. Cronan, . Jr, and S. Subrahmanyam, FadR, transcriptional co-ordination of metabolic expediency, Molecular Microbiology, vol.178, issue.4, pp.937-943, 1998.
DOI : 10.1046/j.1365-2958.1998.00917.x

C. Dirusso, T. Heimert, and A. Metzger, Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A, J Biol Chem, vol.267, pp.8685-8691, 1992.

C. Dirusso, V. Tsvetnitsky, P. Hojrup, and J. Knudsen, Fatty Acyl-CoA Binding Domain of the Transcription Factor FadR. CHARACTERIZATION BY DELETION, AFFINITY LABELING, AND ISOTHERMAL TITRATION CALORIMETRY, Journal of Biological Chemistry, vol.273, issue.50, pp.33652-33659, 1998.
DOI : 10.1074/jbc.273.50.33652

N. Raman and C. Dirusso, Analysis of Acyl Coenzyme A Binding to the Transcription Factor FadR and Identification of Amino Acid Residues in the Carboxyl Terminus Required for Ligand Binding, Journal of Biological Chemistry, vol.270, issue.3, pp.1092-1097, 1995.
DOI : 10.1074/jbc.270.3.1092

D. Van-aalten, C. Dirusso, and J. Knudsen, The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR, The EMBO Journal, vol.20, issue.8, pp.2041-2050, 2001.
DOI : 10.1093/emboj/20.8.2041

D. Van-aalten, C. Dirusso, J. Knudsen, and R. Wierenga, Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold, The EMBO Journal, vol.13, issue.19, pp.5167-5177, 2000.
DOI : 10.1093/emboj/19.19.5167

Y. Xu, R. Heath, Z. Li, C. Rock, and S. White, The FadR{middle dot}DNA Complex: TRANSCRIPTIONAL CONTROL OF FATTY ACID METABOLISM INESCHERICHIA COLI, Journal of Biological Chemistry, vol.276, issue.20, pp.17373-17379, 2001.
DOI : 10.1074/jbc.M100195200

K. Zhu, K. Choi, H. Schweizer, C. Rock, and Y. Zhang, Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa, Molecular Microbiology, vol.171, issue.2, pp.260-273, 2006.
DOI : 10.1074/jbc.M201399200

Y. Zhang, K. Zhu, M. Frank, and C. Rock, A Pseudomonas aeruginosa transcription factor that senses fatty acid structure, Molecular Microbiology, vol.17, issue.3, pp.622-632, 2007.
DOI : 10.1111/j.1365-2958.2006.05088.x

D. Miller, Y. Zhang, C. Subramanian, C. Rock, and S. White, Structural basis for the transcriptional regulation of membrane lipid homeostasis, Nature Structural & Molecular Biology, vol.39, issue.8, pp.971-975, 2010.
DOI : 10.1093/nar/gkg680

G. Schujman, L. Paoletti, A. Grossman, and D. De-mendoza, FapR, a Bacterial Transcription Factor Involved in Global Regulation of Membrane Lipid Biosynthesis, Developmental Cell, vol.4, issue.5, pp.663-672, 2003.
DOI : 10.1016/S1534-5807(03)00123-0

G. Schujman and D. De-mendoza, Regulation of type II fatty acid synthase in Gram-positive bacteria, Current Opinion in Microbiology, vol.11, issue.2, pp.148-152, 2008.
DOI : 10.1016/j.mib.2008.02.002

G. Schujman, M. Guerin, A. Buschiazzo, F. Schaeffer, and . Ll, Structural basis of lipid biosynthesis regulation in Gram-positive bacteria, The EMBO Journal, vol.374, issue.17, pp.4074-4083, 2006.
DOI : 10.1074/jbc.M201399200

M. Leesong, B. Henderson, J. Gillig, J. Schwab, and J. Smith, Structure of a dehydratase???isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site, Structure, vol.4, issue.3, pp.253-264, 1996.
DOI : 10.1016/S0969-2126(96)00030-5

J. Li, U. Derewenda, Z. Dauter, S. Smith, and Z. Derewenda, Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme, Nat Struct Biol, vol.7, pp.555-559, 2000.

S. Dillon and A. Bateman, The Hotdog fold: wrapping up a superfamily of thioesterases and dehydratases, BMC Bioinformatics, vol.5, issue.1, p.109, 2004.
DOI : 10.1186/1471-2105-5-109

L. Pidugu, K. Maity, K. Ramaswamy, N. Surolia, and K. Suguna, Analysis of proteins with the 'Hot dog' fold: Prediction of function and identification of catalytic residues of hypothetical proteins, BMC Structural Biology, vol.9, issue.1, p.37, 2009.
DOI : 10.1186/1472-6807-9-37

F. Lowy, Infections, New England Journal of Medicine, vol.339, issue.8, pp.520-532, 1998.
DOI : 10.1056/NEJM199808203390806

M. David and R. Daum, Community-Associated Methicillin-Resistant Staphylococcus aureus: Epidemiology and Clinical Consequences of an Emerging Epidemic, Clinical Microbiology Reviews, vol.23, issue.3, pp.616-687, 2010.
DOI : 10.1128/CMR.00081-09

F. Deleo, M. Otto, B. Kreiswirth, and H. Chambers, Community-associated meticillin-resistant Staphylococcus aureus, The Lancet, vol.375, issue.9725, pp.1557-1568, 2010.
DOI : 10.1016/S0140-6736(09)61999-1

P. Orth, D. Schnappinger, W. Hillen, W. Saenger, and W. Hinrichs, Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system, Nat Struct Biol, vol.7, pp.215-219, 2000.

M. Lewis, Crystal Structure of the Lactose Operon Repressor and Its Complexes with DNA and Inducer, Science, vol.271, issue.5253, pp.1247-1254, 1996.
DOI : 10.1126/science.271.5253.1247

S. Brinster, Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens, Nature, vol.178, issue.7234, pp.83-86, 2009.
DOI : 10.1038/nature07772

URL : https://hal.archives-ouvertes.fr/pasteur-00366166

J. Parsons, M. Frank, C. Subramanian, P. Saenkham, and C. Rock, Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors, Proceedings of the National Academy of Sciences, vol.108, issue.37, pp.15378-15383, 2011.
DOI : 10.1073/pnas.1109208108

B. Volkman, D. Lipson, D. Wemmer, and D. Kern, Two-State Allosteric Behavior in a Single-Domain Signaling Protein, Science, vol.291, issue.5512, pp.2429-2433, 2001.
DOI : 10.1126/science.291.5512.2429

Y. Gambin, Direct single-molecule observation of a protein living in two opposed native structures, Proceedings of the National Academy of Sciences, vol.106, issue.25, pp.10153-10158, 2009.
DOI : 10.1073/pnas.0904461106

J. Parsons and C. Rock, Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?, Current Opinion in Microbiology, vol.14, issue.5, pp.544-549, 2011.
DOI : 10.1016/j.mib.2011.07.029

S. Brinster, Brinster et al. reply, Nature, vol.13, issue.7279, pp.4-5, 2010.
DOI : 10.1038/nature08668

L. Paoletti, Y. Lu, G. Schujman, D. De-mendoza, and C. Rock, Coupling of Fatty Acid and Phospholipid Synthesis in Bacillus subtilis, Journal of Bacteriology, vol.189, issue.16, pp.5816-5824, 2007.
DOI : 10.1128/JB.00602-07

Y. Lu, Y. Zhang, K. Grimes, J. Qi, R. Lee et al., Acyl-Phosphates Initiate Membrane Phospholipid Synthesis in Gram-Positive Pathogens, Molecular Cell, vol.23, issue.5, pp.765-72, 2006.
DOI : 10.1016/j.molcel.2006.06.030

R. Altenbern, Cerulenin-Inhibited Cells of Staphylococcus aureus Resume Growth When Supplemented with Either a Saturated or an Unsaturated Fatty Acid, Antimicrobial Agents and Chemotherapy, vol.11, issue.3, pp.574-576, 1977.
DOI : 10.1128/AAC.11.3.574

Y. Zhang and C. Rock, Transcriptional regulation in bacterial membrane lipid synthesis, The Journal of Lipid Research, vol.50, issue.Supplement, pp.115-119, 2009.
DOI : 10.1194/jlr.R800046-JLR200

R. Raghow, C. Yellaturu, X. Deng, E. Park, and M. Elam, SREBPs: the crossroads of physiological and pathological lipid homeostasis, Trends in Endocrinology & Metabolism, vol.19, issue.2, pp.65-73, 2008.
DOI : 10.1016/j.tem.2007.10.009

S. Herbert, Repair of Global Regulators in Staphylococcus aureus 8325 and Comparative Analysis with Other Clinical Isolates, Infection and Immunity, vol.78, issue.6, pp.2877-2889, 2010.
DOI : 10.1128/IAI.00088-10

O. Schneewind, P. Model, and V. Fischetti, Sorting of protein a to the staphylococcal cell wall, Cell, vol.70, issue.2, pp.267-281, 1992.
DOI : 10.1016/0092-8674(92)90101-H

A. Leslie, iMosflm, version 1.0.4. MRC-LMB, 2009.

S. Trapani and J. Navaza, : classical and modern, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.1, pp.11-16, 2008.
DOI : 10.1107/S0907444907044460

G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, and W. Paciorek, 2.0, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.11, pp.2023-2030, 2003.
DOI : 10.1107/S0907444903017694

G. Murshudov, A. Vagin, and E. Dodson, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-255, 1997.
DOI : 10.1107/S0907444996012255

I. Davis, A. Leaver-fay, V. Chen, J. Block, and G. Kapral, MolProbity: all-atom contacts and structure validation for proteins and nucleic acids, Nucleic Acids Research, vol.35, issue.Web Server, pp.375-383, 2007.
DOI : 10.1093/nar/gkm216

W. Delano, The PyMOL molecular graphics system, 2002.

X. Lu and W. Olson, 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures, Nucleic Acids Research, vol.31, issue.17, pp.5108-5121, 2003.
DOI : 10.1093/nar/gkg680