H. F. Gilbert, Molecular and Cellular Aspects of Thiol-Disulfide Exchange, Adv. Enzymol. Relat. Areas Mol. Biol, vol.28, issue.2, pp.63-69, 1990.
DOI : 10.1002/9780470123096.ch2

G. Ferrer-sueta, B. Manta, H. Botti, R. Radi, M. Trujillo et al., Factors Affecting Protein Thiol Reactivity and Specificity in Peroxide Reduction, Chemical Research in Toxicology, vol.24, issue.4, pp.24-434, 2011.
DOI : 10.1021/tx100413v

URL : https://hal.archives-ouvertes.fr/pasteur-00685049

A. C. Storer and R. Menard, [33] Catalytic mechanism in papain family of cysteine peptidases, Methods Enzymol, vol.244, pp.486-500, 1994.
DOI : 10.1016/0076-6879(94)44035-2

Z. Y. Zhang, : Structure and Function, Substrate Specificity, and Inhibitor Development, Annual Review of Pharmacology and Toxicology, vol.42, issue.1, pp.209-234, 2002.
DOI : 10.1146/annurev.pharmtox.42.083001.144616

T. Linsky and W. Fast, Mechanistic similarity and diversity among the guanidinemodifying members of the pentein superfamily, Biochim. Biophys. Acta, pp.1943-1953, 1804.

G. Roos, S. Loverix, E. Brosens, K. Van-belle, L. Wyns et al., The Activation of Electrophile, Nucleophile and Leaving Group during the Reaction Catalysed by pI258 Arsenate Reductase, ChemBioChem, vol.66, issue.6, pp.981-989, 2006.
DOI : 10.1002/cbic.200500507

W. A. Munroe, C. A. Lewis-jr, and R. B. Dunlap, Kinetics of sulfhydryl group modification of thymidylate synthetase: A proposal for activation of catalytic cysteinyl residues, Biochemical and Biophysical Research Communications, vol.80, issue.2, pp.80-355, 1978.
DOI : 10.1016/0006-291X(78)90684-8

J. L. Ferrer, J. M. Jez, M. F. Bowman, R. A. Dixon, and J. P. Noel, Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis, Nat. Struct. Biol, vol.6, pp.775-784, 1999.

G. L. Ellman, Tissue sulfhydryl groups, Archives of Biochemistry and Biophysics, vol.82, issue.1, pp.70-77, 1959.
DOI : 10.1016/0003-9861(59)90090-6

C. V. Smythe, The reaction of iodoacetate and of iodoacetamide with various sulfhydryl groups, with urease and with yeast preparations, J. Biol. Chem, vol.114, pp.601-612, 1936.

E. Friedmann, D. H. Marrian, and I. Simonreuss, Mitosis of chick fibroblasts in the presence of unsaturated imides and sulphydryl compounds, Biochimica et Biophysica Acta, vol.9, pp.61-64, 1952.
DOI : 10.1016/0006-3002(52)90120-0

]. L. Hellerman, F. P. Chinard, and V. R. Deitz, Protein sulfhydryl groups and the reversible inactivation of the enzyme urease, J. Biol. Chem, vol.147, pp.443-462, 1943.

L. Moroder, H. J. Musiol, and R. Scharf, Aziridine-2-carboxylic acid A reactive amino acid unit for a new class of cysteine proteinase inhibitors, FEBS Letters, vol.244, issue.1, pp.51-53, 1992.
DOI : 10.1016/0014-5793(92)80098-2

A. V. Peskin, F. M. Low, L. N. Paton, G. J. Maghzal, M. B. Hampton et al., The High Reactivity of Peroxiredoxin 2 with H2O2 Is Not Reflected in Its Reaction with Other Oxidants and Thiol Reagents, Journal of Biological Chemistry, vol.282, issue.16, pp.282-11885, 2007.
DOI : 10.1074/jbc.M700339200

H. C. Hawkins and R. B. Freedman, The reactivities and ionization properties of the active-site dithiol groups of mammalian protein disulphide-isomerase, Biochemical Journal, vol.275, issue.2, pp.275-335, 1991.
DOI : 10.1042/bj2750335

G. B. Kallis and A. Holmgren, Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli, J. Biol. Chem, pp.255-10261, 1980.

R. A. Bednar, Reactivity and pH dependence of thiol conjugation to N-ethylmaleimide: detection of a conformational change in chalcone isomerase, Biochemistry, vol.29, issue.15, pp.3684-3690, 1990.
DOI : 10.1021/bi00467a014

W. P. Jencks, Binding Energy, Specificity, and Enzymic Catalysis: The Circe Effect, Adv. Enzymol. Relat. Areas Mol. Biol, vol.67, issue.1, pp.219-410, 1975.
DOI : 10.1002/9780470122884.ch4

G. Roos, N. Foloppe, and J. Messens, of Redox Cysteines: The Key Role of Hydrogen Bonding, Antioxidants & Redox Signaling, vol.18, issue.1, pp.94-127, 2013.
DOI : 10.1089/ars.2012.4521

G. M. Whitesides, J. E. Lilburn, and R. P. Szajewski, Rates of thiol-disulfide interchange reactions between mono- and dithiols and Ellman's reagent, The Journal of Organic Chemistry, vol.42, issue.2, pp.42-332, 1977.
DOI : 10.1021/jo00422a034

J. W. Nelson and T. E. Creighton, Reactivity and Ionization of the Active Site Cysteine Residues of DsbA, a Protein Required for Disulfide Bond Formation in vivo, Biochemistry, vol.33, issue.19, pp.5974-5983, 1994.
DOI : 10.1021/bi00185a039

M. F. Jeng, A. Holmgren, and H. J. Dyson, Proton Sharing between Cysteine Thiols in Escherichia coli Thioredoxin: Implications for the Mechanism of Protein Disulfide Reduction, Biochemistry, vol.34, issue.32, pp.10101-10105, 1995.
DOI : 10.1021/bi00032a001

J. D. Forman-kay, G. M. Clore, and A. M. Gronenborn, Relationship between electrostatics and redox function in human thioredoxin: characterization of pH titration shifts using two-dimensional homo- and heteronuclear NMR, Biochemistry, vol.31, issue.13, pp.3442-3452, 1992.
DOI : 10.1021/bi00128a019

D. D. Roberts, S. D. Lewis, D. P. Ballou, S. T. Olson, and J. A. Shafer, Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate, Biochemistry, vol.25, issue.19, pp.5595-5601, 1986.
DOI : 10.1021/bi00367a038

R. A. Macquarrie and S. A. Bernhard, Mechanism of alkylation of rabbit muscle glyceraldehyde 3-phosphate dehydrogenase, Biochemistry, vol.10, pp.2456-2466, 1971.

Z. R. Gan and W. W. Wells, Identification and reactivity of the catalytic site of pig liver thioltransferase, J. Biol. Chem, vol.262, pp.6704-6707, 1987.

N. S. Kosower, E. M. Kosower, G. L. Newton, and H. M. Ranney, Bimane fluorescent labels: labeling of normal human red cells under physiological conditions., Proc. Natl. Acad. Sci. USA, pp.3382-3386, 1979.
DOI : 10.1073/pnas.76.7.3382

E. M. Kosower, N. S. Kosower30-]-a, E. M. Radkowsky, and . Kosower, Bromobimane probes for thiols Bimanes: 17. (Haloalkyl)-1,5- diazabicyclo[3.3.O]octadienediones (halo-9,10-dioxabimanes): reactivity toward the tripeptide thiol, glutathione, Methods Enzymol. J. Am. Chem. Soc, vol.251, issue.108, pp.133-148, 1986.

P. B. Hulbert and S. I. Yakubu, Monobromobimane: a substrate for the fluorimetric assay of glutathione transferase, Journal of Pharmacy and Pharmacology, vol.257, issue.6, pp.35-384, 1983.
DOI : 10.1111/j.2042-7158.1983.tb02962.x

D. R. Grassetti and J. F. Murray-jr, Determination of sulfhydryl groups with 2,2???- or 4,4???-dithiodipyridine, Archives of Biochemistry and Biophysics, vol.119, pp.41-49, 1967.
DOI : 10.1016/0003-9861(67)90426-2

B. Knoops, A. Clippe, C. Bogard, K. Arsalane, R. Wattiez et al., Cloning and Characterization of AOEB166, a Novel Mammalian Antioxidant Enzyme of the Peroxiredoxin Family, Journal of Biological Chemistry, vol.274, issue.43, pp.274-30451, 1999.
DOI : 10.1074/jbc.274.43.30451

J. P. Declercq, C. Evrard, A. Clippe, D. V. Stricht, A. Bernard et al., Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 ?? resolution, Journal of Molecular Biology, vol.311, issue.4, pp.311-751, 2001.
DOI : 10.1006/jmbi.2001.4853

M. A. Comini, J. Rettig, N. Dirdjaja, E. M. Hanschmann, C. Berndt et al., Monothiol Glutaredoxin-1 Is an Essential Iron-Sulfur Protein in the Mitochondrion of African Trypanosomes, Journal of Biological Chemistry, vol.283, issue.41, pp.283-27785, 2008.
DOI : 10.1074/jbc.M802010200

M. Filser, M. A. Comini, M. M. Molina-navarro, N. Dirdjaja, E. Herrero et al., Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1, Biological Chemistry, vol.389, issue.1, pp.389-410, 2008.
DOI : 10.1515/BC.2007.147

K. J. Ellis and J. F. Morrison, [23] Buffers of constant ionic strength for studying pH-dependent processes, Methods Enzymol, vol.87, pp.405-426, 1982.
DOI : 10.1016/S0076-6879(82)87025-0

H. Kanety and E. M. Kosower, Bimanes: 15 Kinetics and mechanism of the hydroxide ion reaction with 1,5, J. Org. Chem, vol.910, pp.47-42222, 1982.

D. L. Rabenstein and A. A. Isab, Conformational and acid-base equilibriums of captopril in aqueous solution, Analytical Chemistry, vol.54, issue.3, pp.526-529, 1982.
DOI : 10.1021/ac00240a039

W. Stricks and I. M. Kolthoff, Equilibrium Constants of the Reactions of Sulfite with Cystine and with Dithiodiglycolic Acid, Journal of the American Chemical Society, vol.73, issue.10, pp.4569-4574, 1951.
DOI : 10.1021/ja01154a022

R. E. Benesch and R. Benesch, The Acid Strength of the -SH Group in Cysteine and Related Compounds, Journal of the American Chemical Society, vol.77, issue.22, pp.5877-5881, 1955.
DOI : 10.1021/ja01627a030

S. Barelier, D. Linard, J. Pons, A. Clippe, B. Knoops et al., Discovery of Fragment Molecules That Bind the Human Peroxiredoxin 5 Active Site, PLoS ONE, vol.5, issue.3, p.9744, 2010.
DOI : 10.1371/journal.pone.0009744.s004

C. Evrard, A. Smeets, B. Knoops, and J. Declercq, Crystal structure of the C47S mutant of human peroxiredoxin 5, Journal of Chemical Crystallography, vol.34, issue.8, pp.553-558, 2004.
DOI : 10.1023/B:JOCC.0000042025.08082.6c

A. Hall, D. Parsonage, L. B. Poole, and P. A. Karplus, Structural Evidence that Peroxiredoxin Catalytic Power Is Based on Transition-State Stabilization, Journal of Molecular Biology, vol.402, issue.1, pp.402-194, 2010.
DOI : 10.1016/j.jmb.2010.07.022

M. Dubuisson, D. Vander-stricht, A. Clippe, F. Etienne, T. Nauser et al., Human peroxiredoxin 5 is a peroxynitrite reductase, FEBS Letters, vol.300, issue.1-3, pp.571-161, 2004.
DOI : 10.1016/j.febslet.2004.06.080

M. Trujillo, A. Clippe, B. Manta, G. Ferrer-sueta, A. Smeets et al., Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of Trp84 fluorescence increase upon oxidation, Archives of Biochemistry and Biophysics, vol.467, issue.1, pp.467-95, 2007.
DOI : 10.1016/j.abb.2007.08.008

B. Mannervik and K. Axelsson, Reduction of disulphide bonds in proteins mixed disulphides catalysed by a thioltransferase in rat liver cytosol, Biochemical Journal, vol.149, issue.3, pp.785-788, 1975.
DOI : 10.1042/bj1490785

J. Melchers, N. Dirdjaja, T. Ruppert, and R. L. Krauth-siegel, Glutathionylation of Trypanosomal Thiol Redox Proteins, Journal of Biological Chemistry, vol.282, issue.12, pp.8678-8694, 2007.
DOI : 10.1074/jbc.M608140200

]. Z. Shaked, R. P. Szajewski, and G. M. Whitesides, Rates of thiol-disulfide interchange reactions involving proteins and kinetic measurements of thiol pKa values, Biochemistry, vol.19, issue.18, pp.4156-4166, 1980.
DOI : 10.1021/bi00559a004

K. F. Discola, M. A. De-oliveira, J. R. Rosa-cussiol, G. Monteiro, J. A. Barcena et al., Structural Aspects of the Distinct Biochemical Properties of Glutaredoxin 1 and Glutaredoxin 2 from Saccharomyces cerevisiae, Journal of Molecular Biology, vol.385, issue.3, pp.385-889, 2009.
DOI : 10.1016/j.jmb.2008.10.055

E. Loumaye, G. Ferrer-sueta, B. Alvarez, J. F. Rees, A. Clippe et al., Kinetic studies of peroxiredoxin 6 from Arenicola marina: Rapid oxidation by hydrogen peroxide and peroxynitrite but lack of reduction by hydrogen sulfide, Archives of Biochemistry and Biophysics, vol.514, issue.1-2, pp.514-515, 2011.
DOI : 10.1016/j.abb.2011.07.002

P. Giron, L. Dayon, and J. C. Sanchez, Cysteine tagging for MS-based proteomics, Mass Spectrometry Reviews, vol.20, issue.3, pp.366-395, 2011.
DOI : 10.1002/mas.20285

E. Weerapana, C. Wang, G. M. Simon, F. Richter, S. Khare et al., Quantitative reactivity profiling predicts functional cysteines in proteomes, Nature, vol.319, issue.7325, pp.790-795, 2010.
DOI : 10.1038/nature09472

E. M. Kosower, B. Pazhenchevski, H. Dodiuk, H. Kanety, and D. Faust, Bimanes: 6. Reactive halogen derivatives of syn-and anti-1,5-diazabicyclo, J. Org. Chem, vol.9, pp.10-46, 1981.

B. Manta, C. Pavan, M. Sturlese, A. Medeiros, M. Crispo et al., Iron-sulfur cluster (ISC) binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of ISC coordination and relevance for parasite infectivity, Antioxid. Redox Signal, 2013.