A. Meister, On the discovery of glutathione, Trends in Biochemical Sciences, vol.13, issue.5, pp.185-188, 1988.
DOI : 10.1016/0968-0004(88)90148-X

F. G. Hopkins, On an Autoxidisable Constituent of the Cell, Biochemical Journal, vol.15, issue.2, pp.286-305, 1921.
DOI : 10.1042/bj0150286

N. W. Pirie and K. G. Pinhey, The titration curve of glutathione, J. Biol. Chem, vol.84, pp.321-333, 1929.

F. G. Hopkins, Glutathione, Biochemical Journal, vol.19, issue.5, pp.269-320, 1929.
DOI : 10.1042/bj0190787

E. M. Kosower and N. S. Kosower, Lest I Forget Thee, Glutathione ???, Nature, vol.123, issue.5215, pp.117-120, 1969.
DOI : 10.1016/0006-291X(66)90505-5

G. C. Mills, Hemoglobin catabolism I: glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown, J. Biol. Chem, vol.229, pp.189-197, 1957.

L. Flohe, W. A. Günzler, and H. H. Schock, Glutathione peroxidase: A selenoenzyme, FEBS Letters, vol.49, issue.1, pp.32-132, 1973.
DOI : 10.1016/0014-5793(73)80755-0

M. Jozefczak, T. Remans, J. Vangronsveld, and A. Cuypers, Glutathione Is a Key Player in Metal-Induced Oxidative Stress Defenses, International Journal of Molecular Sciences, vol.13, issue.12, pp.3145-3175, 2012.
DOI : 10.3390/ijms13033145

M. Deponte, Glutathione catalysis and the reaction mechanisms of glutathionedependent enzymes, Biochim. Biophys. Acta, 2012.

C. S. Pillay, J. S. Hofmeyr, B. G. Olivier, J. L. Snoep, and J. M. Rohwer, Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context, Biochemical Journal, vol.417, issue.1, pp.417-269, 2009.
DOI : 10.1042/BJ20080690

C. S. Pillay, J. S. Hofmeyr, and J. M. Rohwer, The logic of kinetic regulation in the thioredoxin system, BMC Systems Biology, vol.5, issue.1, 2011.
DOI : 10.1186/1752-0509-5-15

R. Pal and J. P. Rai, Phytochelatins: Peptides Involved in Heavy Metal Detoxification, Applied Biochemistry and Biotechnology, vol.42, issue.3, pp.945-963, 2010.
DOI : 10.1007/s12010-009-8565-4

A. G. Simpson, J. Lukes, and A. J. Roger, The Evolutionary History of Kinetoplastids and Their Kinetoplasts, Molecular Biology and Evolution, vol.19, issue.12, pp.2071-2083, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004032

A. G. Simpson, J. R. Stevens, and J. Lukes, The evolution and diversity of kinetoplastid flagellates, Trends in Parasitology, vol.22, issue.4, pp.168-174, 2006.
DOI : 10.1016/j.pt.2006.02.006

J. R. Stevens, Kinetoplastid phylogenetics, with special reference to the evolution of parasitic trypanosomes, Parasite, vol.15, issue.3, pp.226-232, 2008.
DOI : 10.1051/parasite/2008153226

K. Vickerman, DEVELOPMENTAL CYCLES AND BIOLOGY OF PATHOGENIC TRYPANOSOMES, British Medical Bulletin, vol.41, issue.2, pp.105-114, 1985.
DOI : 10.1093/oxfordjournals.bmb.a072036

D. A. Maslov, J. Votýpka, V. Yurchenko, and J. Luke?, Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed, Trends in Parasitology, vol.29, issue.1, pp.43-52, 2013.
DOI : 10.1016/j.pt.2012.11.001

M. P. Barrett, R. J. Burchmore, A. Stich, J. O. Lazzari, A. C. Frasch et al., The trypanosomiases, The Lancet, vol.362, issue.9394, pp.1469-1480, 2003.
DOI : 10.1016/S0140-6736(03)14694-6

I. Maudlin, African trypanosomiasis, Annals of Tropical Medicine & Parasitology, vol.15, issue.8, pp.679-701, 2006.
DOI : 10.2307/4060

B. Manta, L. Fleitas, and M. A. Comini, Iron metabolism in pathogenic trypanosomes, Iron Metabolism, 2012.

M. A. Comini, A. Medeiros, and B. Manta, Stress response in the infective stage of Trypanosoma brucei, Stress Response in Microbiology, pp.377-404

J. M. Requena, The stressful life of pathogenic Leishmania species, Stress Response in Microbiology, pp.323-346

T. P. Ürményi, D. C. Rodrigues, R. Silva, and E. Rondinelli, The stress response of Trypanosoma cruzi, Stress Response in Microbiology, pp.347-376

C. Clayton and M. Shapira, Post-transcriptional regulation of gene expression in trypanosomes and leishmanias, Molecular and Biochemical Parasitology, vol.156, issue.2, pp.93-101, 2007.
DOI : 10.1016/j.molbiopara.2007.07.007

L. M. Figueiredo, G. A. Cross, and C. J. Janzen, Epigenetic regulation in African trypanosomes: a new kid on the block, Nature Reviews Microbiology, vol.66, issue.7, pp.504-513, 2009.
DOI : 10.1038/nature07997

M. Comini, U. Menge, J. Wissing, and L. Flohé, Trypanothione Synthesis in Crithidia Revisited, Journal of Biological Chemistry, vol.280, issue.8, pp.6850-6860, 2005.
DOI : 10.1074/jbc.M404486200

J. A. Atwood, I. , D. B. Weatherly, T. A. Minning, B. Bundy et al., The Trypanosoma cruzi Proteome, Science, vol.309, issue.5733, pp.473-476, 2005.
DOI : 10.1126/science.1110289

A. Parodi-talice, V. Monteiro-goes, N. Arrambide, A. R. Avila, R. Duran et al., Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis, J. Mass Spectrom, pp.42-1422, 2007.

S. R. Meshnick, S. H. Blobstein, R. W. Grady, and A. Cerami, An approach to the development of new drugs for African trypanosomiasis, Journal of Experimental Medicine, vol.148, issue.2, pp.148-569, 1978.
DOI : 10.1084/jem.148.2.569

B. A. Arrick, O. W. Griffith, and A. Cerami, Inhibition of glutathione synthesis as a chemotherapeutic strategy for trypanosomiasis, Journal of Experimental Medicine, vol.153, issue.3, pp.720-725, 1981.
DOI : 10.1084/jem.153.3.720

C. Moncada, Y. Repetto, J. Aldunate, M. E. Letelier, and A. Morello, Role of glutathione in the susceptibility of Trypanosoma cruzi to drugs, Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, vol.94, issue.1, pp.94-87, 1989.
DOI : 10.1016/0742-8413(89)90148-5

A. Boveris, H. Sies, E. E. Martino, R. Docampo, J. F. Turrens et al., Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi, Biochem. J, pp.188-643, 1980.

A. H. Fairlamb and A. Cerami, Identification of a novel, thiol-containing co-factor essential for glutathione reductase enzyme activity in trypanosomatids, Molecular and Biochemical Parasitology, vol.14, issue.2, pp.187-198, 1985.
DOI : 10.1016/0166-6851(85)90037-4

A. H. Fairlamb, P. Blackburn, P. Ulrich, B. T. Chait, and A. Cerami, Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids, Science, vol.227, issue.4693, pp.1485-1487, 1985.
DOI : 10.1126/science.3883489

R. L. Krauth-siegel, B. Enders, G. B. Henderson, A. H. Fairlamb, and R. H. Schirmer, Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme, European Journal of Biochemistry, vol.365, issue.1, pp.164-123, 1987.
DOI : 10.1016/0003-9861(59)90090-6

E. Nogoceke, D. U. Gommel, M. Kiess, H. M. Kalisz, and L. Flohé, A Unique Cascade of Oxidoreductases Catalyses Trypanothione-Mediated Peroxide Metabolism in Crithidia fasciculata, Biological Chemistry, vol.378, issue.8, pp.378-827, 1997.
DOI : 10.1515/bchm.1997.378.8.827

M. Dormeyer, N. Reckenfelderbäumer, H. Ludemann, and R. L. Krauth-siegel, Trypanothione-dependent Synthesis of Deoxyribonucleotides by Trypanosoma brucei Ribonucleotide Reductase, Journal of Biological Chemistry, vol.276, issue.14, pp.276-10602, 2001.
DOI : 10.1074/jbc.M010352200

R. L. Krauth-siegel and M. A. Comini, Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1780, issue.11, pp.1236-1248, 2008.
DOI : 10.1016/j.bbagen.2008.03.006

R. L. Krauth-siegel, M. A. Comini, and T. Schlecker, The Trypanothione System, Subcell. Biochem, vol.44, pp.231-251, 2007.
DOI : 10.1007/978-1-4020-6051-9_11

M. Comini, U. Menge, and L. Flohé, Biosynthesis of Trypanothione in Trypanosoma brucei brucei, Biological Chemistry, vol.384, issue.4, pp.653-656, 2003.
DOI : 10.1515/BC.2003.072

S. L. Oza, M. P. Shaw, S. Wyllie, and A. H. Fairlamb, Trypanothione biosynthesis in Leishmania major, Molecular and Biochemical Parasitology, vol.139, issue.1, pp.107-116, 2005.
DOI : 10.1016/j.molbiopara.2004.10.004

S. L. Oza, M. R. Ariyanayagam, N. Aitcheson, and A. H. Fairlamb, Properties of trypanothione synthetase from Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.131, issue.1, pp.131-156, 2003.
DOI : 10.1016/S0166-6851(03)00176-2

S. L. Oza, M. R. Ariyanayagam, and A. H. Fairlamb, Characterization of recombinant glutathionylspermidine synthetase/amidase from Crithidia fasciculata, Biochemical Journal, vol.364, issue.3, pp.679-686, 2002.
DOI : 10.1042/bj20011370

S. L. Oza, E. Tetaud, M. R. Ariyanayagam, S. S. Warnon, and A. H. Fairlamb, A Single Enzyme Catalyses Formation of Trypanothione from Glutathione and Spermidine in Trypanosoma cruzi, Journal of Biological Chemistry, vol.277, issue.39, pp.277-35853, 2002.
DOI : 10.1074/jbc.M204403200

F. Montrichard, F. Le-guen, D. L. Laval-martin, and E. Davioud-charvet, Evidence for the co-existence of glutathione reductase and trypanothione reductase in the non-trypanosomatid Euglenozoa: Euglena gracilis Z, FEBS Lett, pp.442-471, 1999.

A. P. Jackson, M. A. Quail, and M. Berriman, Insights into the genome sequence of a free-living Kinetoplastid: Bodo saltans (Kinetoplastida: Euglenozoa), BMC Genomics, vol.9, issue.1, 2008.
DOI : 10.1186/1471-2164-9-594

P. Deschamps, E. Lara, W. Marande, P. López-garcía, F. Ekelund et al., Phylogenomic Analysis of Kinetoplastids Supports That Trypanosomatids Arose from within Bodonids, Molecular Biology and Evolution, vol.28, issue.1, pp.28-53, 2011.
DOI : 10.1093/molbev/msq289

J. Whitehead, J. Woodward, M. D. Wortman, T. M. Adams, K. Embley et al., The genome of the African trypanosome Trypanosoma brucei, Science, vol.309, pp.416-422, 2005.

A. C. Ivens, C. S. Peacock, E. A. Worthey, L. Murphy, G. Aggarwal et al., The Genome of the Kinetoplastid Parasite, Leishmania major, Science, vol.309, issue.5733, pp.436-442, 2005.
DOI : 10.1126/science.1112680

N. M. El-sayed, P. J. Myler, D. C. Bartholomeu, D. Nilsson, G. Aggarwal et al., The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease, Science, vol.309, issue.5733, pp.409-415, 2005.
DOI : 10.1126/science.1112631

S. Krieger, W. Schwarz, M. R. Ariyanayagam, A. H. Fairlamb, R. L. Krauth-siegel et al., Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress, Molecular Microbiology, vol.37, issue.3, pp.35-542, 2000.
DOI : 10.1046/j.1365-2958.2000.01721.x

S. R. Wilkinson, D. Horn, S. R. Prathalingam, and J. M. Kelly, RNA Interference Identifies Two Hydroperoxide Metabolizing Enzymes That Are Essential to the Bloodstream Form of the African Trypanosome, Journal of Biological Chemistry, vol.278, issue.34, pp.278-31640, 2003.
DOI : 10.1074/jbc.M303035200

L. Piacenza, F. Irigoín, M. N. Alvarez, G. Peluffo, M. C. Taylor et al., Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression, Biochem. J, pp.403-323, 2007.

M. D. Piñeyro, A. Parodi-talice, T. Arcari, and C. Robello, Peroxiredoxins from Trypanosoma cruzi: Virulence factors and drug targets for treatment of Chagas disease?, Gene, vol.408, issue.1-2, pp.45-50, 2008.
DOI : 10.1016/j.gene.2007.10.014

T. J. Wyllie, A. H. Vickers, and . Fairlamb, Roles of Trypanothione S-Transferase and Tryparedoxin Peroxidase in Resistance to Antimonials, Antimicrobial Agents and Chemotherapy, vol.52, issue.4, pp.1359-1365, 2008.
DOI : 10.1128/AAC.01563-07

L. S. Torrie, S. Wyllie, D. Spinks, S. L. Oza, S. Thompson et al., Chemical Validation of Trypanothione Synthetase: A POTENTIAL DRUG TARGET FOR HUMAN TRYPANOSOMIASIS, Journal of Biological Chemistry, vol.284, issue.52, pp.284-36137, 2009.
DOI : 10.1074/jbc.M109.045336

L. Piacenza, M. P. Zago, G. Peluffo, M. N. Alvarez, M. A. Basombrio et al., Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence, International Journal for Parasitology, vol.39, issue.13, pp.39-1455, 2009.
DOI : 10.1016/j.ijpara.2009.05.010

L. Piacenza, G. Peluffo, M. N. Alvarez, A. Martínez, and R. Radi, Trypanosoma cruzi antioxidant enzymes as virulence factors in chagas disease, Antioxid. Redox Signal, 2012.

A. P. Fernandes and A. Holmgren, Glutaredoxins: Glutathione-Dependent Redox Enzymes with Functions Far Beyond a Simple Thioredoxin Backup System, Antioxidants & Redox Signaling, vol.6, issue.1, pp.63-74, 2004.
DOI : 10.1089/152308604771978354

N. Rouhier, Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly, New Phytologist, vol.283, issue.2, pp.365-372, 2010.
DOI : 10.1111/j.1469-8137.2009.03146.x

S. Ceylan, V. Seidel, N. Ziebart, C. Berndt, N. Dirdjaja et al., The Dithiol Glutaredoxins of African Trypanosomes Have Distinct Roles and Are Closely Linked to the Unique Trypanothione Metabolism, Journal of Biological Chemistry, vol.285, issue.45, pp.285-35224, 2010.
DOI : 10.1074/jbc.M110.165860

B. Manta, C. Pavan, M. Sturlese, A. Medeiros, M. Crispo et al., Iron?sulfur cluster (ISC) binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of ISC coordination and relevance for parasite infectivity, Antioxid. Redox Signal, 2012.

M. A. Comini and L. Flohé, Trypanothione-Based Redox Metabolism of Trypanosomatids, Drug Discovery, Trypanosomatid Diseases: Molecular Routes to Drug DiscoveryWiley-VCH, 2013.
DOI : 10.1002/9783527670383.ch9

F. Irigoín, L. Cibils, M. A. Comini, S. R. Wilkinson, L. Flohé et al., Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification, Free Radical Biology and Medicine, vol.45, issue.6, pp.45-733, 2008.
DOI : 10.1016/j.freeradbiomed.2008.05.028

T. Nozaki, Y. Shigeta, Y. Saito-nakano, M. Imada, and W. D. Kruger-manta, Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Biochimica et Biophysica Acta, pp.1830-3199, 2013.

. Trypanosoma-cruzi, Isolation and molecular characterization of cystathionine beta-synthase and serine acetyltransferase from Trypanosoma, J. Biol. Chem, vol.276, pp.6516-6523, 2001.

D. Marciano, M. Santana, and C. Nowicki, Functional characterization of enzymes involved in cysteine biosynthesis and H2S production in Trypanosoma cruzi, Molecular and Biochemical Parasitology, vol.185, issue.2, pp.114-120, 2012.
DOI : 10.1016/j.molbiopara.2012.07.009

R. A. Williams, S. M. Kelly, J. C. Mottram, and G. H. Coombs, 3-Mercaptopyruvate sulfurtransferase of Leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism, J. Biol. Chem, pp.278-1480, 2003.

V. Ali and T. Nozaki, Current Therapeutics, Their Problems, and Sulfur-Containing-Amino-Acid Metabolism as a Novel Target against Infections by "Amitochondriate" Protozoan Parasites, Clinical Microbiology Reviews, vol.20, issue.1, pp.164-187, 2007.
DOI : 10.1128/CMR.00019-06

T. Nozaki, V. Ali, and M. Tokoro, Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa, Adv. Parasitol, vol.60, pp.1-99, 2005.
DOI : 10.1016/S0065-308X(05)60001-2

G. E. Canepa, L. A. Bouvier, M. R. Miranda, A. D. Uttaro, and C. A. Pereira, Characterization of Trypanosoma cruzi L-cysteine transport mechanisms and their adaptive regulation, FEMS Microbiol. Lett, pp.292-319, 2009.

M. Duszenko, M. A. Ferguson, G. S. Lamont, M. R. Rifkin, and G. A. Cross, Cysteine eliminates the feeder cell requirement for cultivation of Trypanosoma brucei bloodstream forms in vitro, Journal of Experimental Medicine, vol.162, issue.4, pp.162-1256, 1985.
DOI : 10.1084/jem.162.4.1256

F. Hesse, P. M. Selzer, K. Mühlstädt, and M. Duszenko, A novel cultivation technique for long-term maintenance of bloodstream form trypanosomes in vitro, Molecular and Biochemical Parasitology, vol.70, issue.1-2, pp.70-157, 1995.
DOI : 10.1016/0166-6851(95)00027-X

S. M. Deneke and B. L. Fanburg, Regulation of cellular glutathione, Am. J. Physiol, vol.257, pp.163-173, 1989.

M. Duszenko, K. Mühlstädt, and A. Broder, Cysteine is an essential growth factor for Trypanosoma brucei bloodstream forms, Molecular and Biochemical Parasitology, vol.50, issue.2, pp.269-273, 1992.
DOI : 10.1016/0166-6851(92)90224-8

S. S. Iyer, D. P. Jones, K. L. Brigham, and M. Rojas, Oxidation of Plasma Cysteine/Cystine Redox State in Endotoxin-Induced Lung Injury, American Journal of Respiratory Cell and Molecular Biology, vol.40, issue.1, pp.40-90, 2009.
DOI : 10.1165/rcmb.2007-0447OC

T. T. Huynh, V. T. Huynh, M. A. Harmon, and M. A. Phillips, Gene knockdown of gammaglutamylcysteine synthetase by RNAi in the parasitic protozoa Trypanosoma brucei demonstrates that it is an essential enzyme, J. Biol. Chem, pp.278-39794, 2003.

A. Mukherjee, G. Roy, C. Guimond, and M. Ouellette, The gamma-glutamylcysteine synthetase gene of Leishmania is essential and involved in response to oxidants, Mol. Microbiol, pp.74-914, 2009.

V. Olin-sandoval, Z. González-chávez, M. Berzunza-cruz, I. Martínez, R. Jasso-chávez et al., Drug target validation of the trypanothione pathway enzymes through metabolic modelling, FEBS Journal, vol.109, issue.10, pp.279-1811, 2012.
DOI : 10.1111/j.1742-4658.2012.08557.x

D. V. Lueder and M. A. Phillips, Characterization of Trypanosoma brucei gammaglutamylcysteine synthetase, an essential enzyme in the biosynthesis of trypanothione (diglutathionylspermidine), J. Biol. Chem, pp.271-17485, 1996.

D. P. Jones, J. L. Carlson, P. S. Samiec, P. Sternberg-jr, V. C. Mody-jr et al., Glutathione measurement in human plasma, Clinica Chimica Acta, vol.275, issue.2, pp.175-184, 1998.
DOI : 10.1016/S0009-8981(98)00089-8

W. Wang and N. Ballatori, Endogenous glutathione conjugates: occurrence and biological functions, Pharmacol. Rev, vol.50, pp.335-356, 1998.

R. L. Krauth-siegel and A. E. Leroux, Low-Molecular-Mass Antioxidants in Parasites, Antioxidants & Redox Signaling, vol.17, issue.4, pp.583-607, 2012.
DOI : 10.1089/ars.2011.4392

E. Willert and M. A. Phillips, Regulation and function of polyamines in African trypanosomes, Trends in Parasitology, vol.28, issue.2, pp.66-72, 2012.
DOI : 10.1016/j.pt.2011.11.001

R. Balaña-fouce, E. Calvo-Álvarez, R. Álvarez-velilla, C. F. Prada, Y. Pérez-pertejo et al., Role of trypanosomatid's arginase in polyamine biosynthesis and pathogenesis, Molecular and Biochemical Parasitology, vol.181, issue.2, pp.181-85, 2012.
DOI : 10.1016/j.molbiopara.2011.10.007

G. Colotti and A. Ilari, Polyamine metabolism in Leishmania: from arginine to trypanothione, Amino Acids, vol.272, issue.Pt 2, pp.269-285, 2011.
DOI : 10.1007/s00726-010-0630-3

M. C. Taylor, H. Kaur, B. Blessington, J. M. Kelly, and S. R. Wilkinson, Validation of spermidine synthase as a drug target in African trypanosomes, Biochemical Journal, vol.409, issue.2, pp.409-563, 2008.
DOI : 10.1042/BJ20071185

F. Li, S. B. Hua, C. C. Wang, and K. M. Gottesdiener, Trypanosoma brucei brucei:Characterization of an ODC Null Bloodstream Form Mutant and the Action of Alpha-difluoromethylornithine, Experimental Parasitology, vol.88, issue.3, pp.88-255, 1998.
DOI : 10.1006/expr.1998.4237

Y. Xiao, D. E. Mccloskey, and M. A. Phillips, RNA Interference-Mediated Silencing of Ornithine Decarboxylase and Spermidine Synthase Genes in Trypanosoma brucei Provides Insight into Regulation of Polyamine Biosynthesis, Eukaryotic Cell, vol.8, issue.5, pp.747-755, 2009.
DOI : 10.1128/EC.00047-09

Y. Jiang, S. C. Roberts, A. Jardim, N. S. Carter, S. Shih et al., Ornithine Decarboxylase Gene Deletion Mutants of Leishmania donovani, Journal of Biological Chemistry, vol.274, issue.6, pp.274-3781, 1999.
DOI : 10.1074/jbc.274.6.3781

O. Heby, L. Persson, and M. Rentala, Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas??? disease, and leishmaniasis, Amino Acids, vol.11, issue.2, pp.359-366, 2007.
DOI : 10.1007/s00726-007-0537-9

S. Müller, G. H. Coombs, and R. D. Walter, Targeting polyamines of parasitic protozoa in chemotherapy, Trends in Parasitology, vol.17, issue.5, pp.242-249, 2001.
DOI : 10.1016/S1471-4922(01)01908-0

C. Carrillo, G. E. Canepa, I. D. Algranati, and C. A. Pereira, Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi, Biochemical and Biophysical Research Communications, vol.344, issue.3, pp.344-936, 2006.
DOI : 10.1016/j.bbrc.2006.03.215

M. Hasne, I. Coppens, R. Soysa, and B. Ullman, A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi, Mol. Microbiol, pp.76-78, 2010.

M. Hasne and B. Ullman, Identification and Characterization of a Polyamine Permease from the Protozoan Parasite Leishmania major, Journal of Biological Chemistry, vol.280, issue.15, pp.15188-15194, 2005.
DOI : 10.1074/jbc.M411331200

M. Hasne and B. Ullman, Genetic and Biochemical Analysis of Protozoal Polyamine Transporters, Methods Mol. Biol, vol.720, pp.309-326, 2011.
DOI : 10.1007/978-1-61779-034-8_19

G. Peluffo, L. Piacenza, F. Irigoín, M. N. Alvarez, and R. Radi, l-arginine metabolism during interaction of Trypanosoma cruzi with host cells, Trends in Parasitology, vol.20, issue.8, pp.363-369, 2004.
DOI : 10.1016/j.pt.2004.05.010

C. Carrillo, S. Cejas, N. S. González, and I. D. Algranati, Trypanosoma cruzi epimastigotes lack ornithine decarboxylase but can express a foreign gene encoding this enzyme, FEBS Lett, vol.454, pp.192-196, 1999.

C. Carrillo, S. Cejas, A. Huber, N. S. González, and I. D. Algranati, Lack of Arginine Decarboxylase in Trypanosoma cruzi Epimastigotes, The Journal of Eukaryotic Microbiology, vol.78, issue.5, pp.50-312, 2003.
DOI : 10.1016/0031-9422(88)84079-2

S. Van-nieuwenhove, P. J. Schechter, J. Declercq, G. Boné, J. Burke et al., Treatment of gambiense sleeping sickness in the Sudan with oral DFMO (DL-alpha-difluoromethylornithine), an inhibitor of ornithine decarboxylase; first field trial, Trans. R. Soc. Trop. Med. Hyg, pp.79-692, 1985.

C. J. Bacchi, H. C. Nathan, S. H. Hutner, P. P. Mccann, and A. Sjoerdsma, Polyamine metabolism: a potential therapeutic target in trypanosomes, Science, vol.210, issue.4467, pp.332-334, 1980.
DOI : 10.1126/science.6775372

A. J. Bitonti, J. A. Dumont, and P. P. Mccann, Characterization of Trypanosoma brucei brucei S-adenosyl-L-methionine decarboxylase and its inhibition by Berenil, pentamidine and methylglyoxal bis(guanylhydrazone), Biochem. J, pp.237-685, 1986.

N. S. González, A. Huber, and I. D. Algranati, Spermidine is essential for normal proliferation of trypanosomatid protozoa, FEBS Letters, vol.15, issue.3, pp.323-326, 2001.
DOI : 10.1016/S0014-5793(01)03091-5

S. C. Roberts, Y. Jiang, A. Jardim, N. S. Carter, O. Heby et al., Genetic analysis of spermidine synthase from Leishmania donovani, Molecular and Biochemical Parasitology, vol.115, issue.2, pp.115-217, 2001.
DOI : 10.1016/S0166-6851(01)00293-6

C. Gilroy, T. Olenyik, S. C. Roberts, and B. Ullman, Spermidine Synthase Is Required for Virulence of Leishmania donovani, Infection and Immunity, vol.79, issue.7, pp.2764-2769, 2011.
DOI : 10.1128/IAI.00073-11

B. S. Leander, Did trypanosomatid parasites have photosynthetic ancestors?, Trends in Microbiology, vol.12, issue.6, pp.251-258, 2004.
DOI : 10.1016/j.tim.2004.04.001

V. Hannaert, E. Saavedra, F. Duffieux, J. Szikora, D. J. Rigden et al., Plant-like traits associated with metabolism of Trypanosoma parasites, Proceedings of the National Academy of Sciences, vol.100, issue.3, pp.1067-1071, 2003.
DOI : 10.1073/pnas.0335769100

M. A. Comini, S. A. Guerrero, S. Haile, U. Menge, H. Lünsdorf et al., Validation of Trypanosoma brucei trypanothione synthetase as drug target, Free Radic, Biol. Med, pp.36-1289, 2004.

E. Tetaud, F. Manai, M. P. Barrett, K. Nadeau, C. T. Walsh et al., Cloning and Characterization of the Two Enzymes Responsible for Trypanothione Biosynthesis in Crithidia fasciculata, Journal of Biological Chemistry, vol.273, issue.31, pp.273-19383, 1998.
DOI : 10.1074/jbc.273.31.19383

C. W. Tabor and H. Tabor, The complete conversion of spermidine to a peptide derivative in Escherichia coli, Biochemical and Biophysical Research Communications, vol.41, issue.1, pp.41-232, 1970.
DOI : 10.1016/0006-291X(70)90493-6

H. Shim and A. H. Fairlamb, Levels of polyamines, glutathione and glutathionespermidine conjugates during growth of the insect trypanosomatid Crithidia fasciculata, J. Gen. Microbiol, vol.134, pp.807-817, 1988.

J. M. Bollinger-jr, D. S. Kwon, G. W. Huisman, R. Kolter, and C. T. Walsh, Glutathionylspermidine Metabolism in Escherichia coli.: PURIFICATION, CLONING, OVERPRODUCTION, AND CHARACTERIZATION OF A BIFUNCTIONAL GLUTATHIONYLSPERMIDINE SYNTHETASE/AMIDASE, Journal of Biological Chemistry, vol.270, issue.23, pp.14031-14041, 1995.
DOI : 10.1074/jbc.270.23.14031

K. K. Huynh and S. Grinstein, Regulation of vacuolar pH and its modulation by some microbial species, Microbiol, Mol. Biol. Rev, pp.71-452, 2007.

S. Wyllie, S. L. Oza, S. Patterson, D. Spinks, S. Thompson et al., Dissecting the essentiality of the bifunctional trypanothione synthetase-amidase in Trypanosoma brucei using chemical and genetic methods, Mol. Microbiol, pp.74-529, 2009.

K. Koenig, U. Menge, M. Kiess, V. Wray, and L. Flohé, Convenient Isolation and Kinetic Mechanism of Glutathionylspermidine Synthetase from Crithidia fasciculata, Journal of Biological Chemistry, vol.272, issue.18, pp.272-11908, 1997.
DOI : 10.1074/jbc.272.18.11908

M. R. Ariyanayagam, S. L. Oza, M. L. Guther, and A. H. Fairlamb, Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome, Biochemical Journal, vol.391, issue.2, pp.391-425, 2005.
DOI : 10.1042/BJ20050911

E. Tetaud and A. H. Fairlamb, Cloning, expression and reconstitution of the trypanothione-dependent peroxidase system of Crithidia fasciculata1Note: Nucleotide sequence data reported in this paper are available in the EMBL, GenBank and DDJB databases under the GenBank accession numbers AF055913 (tryparedoxin) and AF055914 (tryparedoxin peroxidase).1, Molecular and Biochemical Parasitology, vol.96, issue.1-2, pp.111-123, 1998.
DOI : 10.1016/S0166-6851(98)00120-0

M. C. Jockers-scherübl, R. H. Schirmer, and R. L. Krauth-siegel, Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds, European Journal of Biochemistry, vol.115, issue.2, pp.180-267, 1989.
DOI : 10.1016/S0162-0134(00)80078-1

D. Spinks, L. S. Torrie, S. Thompson, J. R. Harrison, J. A. Frearson et al., Design, Synthesis and Biological Evaluation of Trypanosoma brucei Trypanothione Synthetase Inhibitors, ChemMedChem, vol.32, issue.1, pp.95-106, 2012.
DOI : 10.1002/cmdc.201100420

T. Schlecker, A. Schmidt, N. Dirdjaja, F. Voncken, C. Clayton et al., Substrate specificity, localization, and essential role of the glutathione peroxidasetype tryparedoxin peroxidases in Trypanosoma brucei, J. Biol. Chem, pp.280-14385, 2005.

E. Tetaud, C. Giroud, A. R. Prescott, D. W. Parkin, D. Baltz et al., Molecular characterisation of mitochondrial and cytosolic trypanothione-dependent tryparedoxin peroxidases in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.116, issue.2, pp.171-183, 2001.
DOI : 10.1016/S0166-6851(01)00320-6

H. Castro, S. Romao, F. R. Gadelha, and A. M. Tomás, Leishmania infantum: Provision of reducing equivalents to the mitochondrial tryparedoxin/tryparedoxin peroxidase system, Experimental Parasitology, vol.120, issue.4, pp.421-423, 2008.
DOI : 10.1016/j.exppara.2008.09.002

H. Castro, S. Romao, S. Carvalho, F. Teixeira, C. Sousa et al., Mitochondrial Redox Metabolism in Trypanosomatids Is Independent of Tryparedoxin Activity, PLoS ONE, vol.97, issue.9, p.12607, 2010.
DOI : 10.1371/journal.pone.0012607.s004

L. H. Lash, Mitochondrial glutathione transport: Physiological, pathological and toxicological implications, Chemico-Biological Interactions, vol.163, issue.1-2, pp.54-67, 2006.
DOI : 10.1016/j.cbi.2006.03.001

C. Colasante, P. P. Diaz, C. Clayton, and F. Voncken, Mitochondrial carrier family inventory of Trypanosoma brucei brucei: Identification, expression and subcellular localisation, Molecular and Biochemical Parasitology, vol.167, issue.2, pp.104-117, 2009.
DOI : 10.1016/j.molbiopara.2009.05.004

C. Dumas, M. Ouellette, J. Tovar, M. L. Cunningham, A. H. Fairlamb et al., Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages, The EMBO Journal, vol.16, issue.10, pp.2590-2598, 1997.
DOI : 10.1093/emboj/16.10.2590

J. Tovar, S. Wilkinson, J. C. Mottram, and A. H. Fairlamb, Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus, Molecular Microbiology, vol.29, issue.2, pp.29-653, 1998.
DOI : 10.1073/pnas.95.9.5311

K. Smith, F. R. Opperdoes, and A. H. Fairlamb, Subcellular distribution of trypanothione reductase in bloodstream and procyclic forms of Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.48, issue.1, pp.48-109, 1991.
DOI : 10.1016/0166-6851(91)90170-B

D. Meziane-cherif, M. Aumercier, I. Kora, C. Sergheraert, A. Tartar et al., Trypanosoma cruzi: immunolocalization of trypanothione reductase, Exp. Parasitol, pp.79-536, 1994.

R. N. Ondarza, G. Hurtado, A. Iturbe, E. Hernández, E. Tamayo et al., Identification of trypanothione from the human pathogen Entamoeba histolytica by mass spectrometry and chemical analysis, Biotechnol. Appl. Biochem, pp.42-175, 2005.

E. M. Tamayo, A. Iturbe, E. Hernández, G. Hurtado, M. De-lourdes-gutiérrez-x et al., Trypanothione reductase from the human parasite Entamoeba histolytica: a new drug target, Biotechnol. Appl. Biochem, pp.41-105, 2005.

M. Moutiez, D. Meziane-cherif, M. Aumerceir, C. Sergheraert, and A. Tartar, Compared Reactivities of Trypanothione and Glutathione in Conjugation Reactions., CHEMICAL & PHARMACEUTICAL BULLETIN, vol.42, issue.12, pp.42-2641, 1994.
DOI : 10.1248/cpb.42.2641

J. M. Wilson, R. J. Bayer, and D. J. Hupe, Structure-reactivity correlations for the thiol-disulfide interchange reaction, Journal of the American Chemical Society, vol.99, issue.24, pp.99-7922, 1977.
DOI : 10.1021/ja00466a027

G. Ferrer-sueta, B. Manta, H. Botti, R. Radi, M. Trujillo et al., Factors Affecting Protein Thiol Reactivity and Specificity in Peroxide Reduction, Chemical Research in Toxicology, vol.24, issue.4, pp.24-434, 2011.
DOI : 10.1021/tx100413v

URL : https://hal.archives-ouvertes.fr/pasteur-00685049

A. H. Fairlamb and A. Cerami, Metabolism and Functions of Trypanothione in the Kinetoplastida, Annual Review of Microbiology, vol.46, issue.1, pp.695-729, 1992.
DOI : 10.1146/annurev.mi.46.100192.003403

N. Reckenfelderbäumer and R. L. Krauth-siegel, Catalytic Properties, Thiol pK Value, and Redox Potential of Trypanosoma brucei Tryparedoxin, Journal of Biological Chemistry, vol.277, issue.20, pp.17548-17555, 2002.
DOI : 10.1074/jbc.M112115200

R. L. Krauth-siegel and H. Schmidt, Trypanothione and Tryparedoxin in Ribonucleotide Reduction, Meth. Enzymol, vol.347, pp.259-266, 2002.
DOI : 10.1016/S0076-6879(02)47025-5

M. N. Alvarez, G. Peluffo, L. Piacenza, and R. Radi, Intraphagosomal Peroxynitrite as a Macrophage-derived Cytotoxin against Internalized Trypanosoma cruzi: CONSEQUENCES FOR OXIDATIVE KILLING AND ROLE OF MICROBIAL PEROXIREDOXINS IN INFECTIVITY, Journal of Biological Chemistry, vol.286, issue.8, pp.286-6627, 2011.
DOI : 10.1074/jbc.M110.167247

M. Trujillo, H. Budde, M. D. Piñeyro, M. Stehr, C. Robello et al., Trypanosoma brucei and Trypanosoma cruzi Tryparedoxin Peroxidases Catalytically Detoxify Peroxynitrite via Oxidation of Fast Reacting Thiols, Journal of Biological Chemistry, vol.279, issue.33, pp.279-34175, 2004.
DOI : 10.1074/jbc.M404317200

M. Trujillo, A. Clippe, B. Manta, G. Ferrer-sueta, A. Smeets et al., Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of Trp84 fluorescence increase upon oxidation, Archives of Biochemistry and Biophysics, vol.467, issue.1, pp.467-95, 2007.
DOI : 10.1016/j.abb.2007.08.008

M. Trujillo, G. Ferrer-sueta, and R. Radi, Kinetic Studies on Peroxynitrite Reduction by Peroxiredoxins, Meth. Enzymol, vol.441, pp.173-196, 2008.
DOI : 10.1016/S0076-6879(08)01210-X

M. D. Piñeyro, T. Arcari, C. Robello, R. Radi, and M. Trujillo, Tryparedoxin peroxidases from Trypanosoma cruzi: High efficiency in the catalytic elimination of hydrogen peroxide and peroxynitrite, Arch. Biochem. Biophys, pp.507-287, 2011.

L. Thomson, A. Denicola, and R. Radi, The trypanothione???thiol system in Trypanosoma cruzi as a key antioxidant mechanism against peroxynitrite-mediated cytotoxicity, Archives of Biochemistry and Biophysics, vol.412, issue.1, pp.412-55, 2003.
DOI : 10.1016/S0003-9861(02)00745-2

M. Trujillo, M. N. Alvarez, L. Piacenza, M. Hugo, G. Peluffo et al., Peroxynitrite as a cytotoxic effector against Trypanosoma cruzi: oxidative killing and antioxidant resistance mechanisms, Trypanosomatid Diseases: Molecular Routes to Drug Discovery, 2013.

A. Denicola, B. A. Freeman, M. Trujillo, and R. Radi, Peroxynitrite Reaction with Carbon Dioxide/Bicarbonate: Kinetics and Influence on Peroxynitrite-Mediated Oxidations, Archives of Biochemistry and Biophysics, vol.333, issue.1, pp.333-382, 1996.
DOI : 10.1006/abbi.1996.0363

C. C. Winterbourn, Superoxide as an intracellular radical sink, Free Radic, Biol. Med, vol.14, pp.85-90, 1993.

E. Cadenas, [9] Thiyl radical formation during thiol oxidation by ferrylmyoglobin, Meth. Enzymol, vol.251, pp.106-116, 1995.
DOI : 10.1016/0076-6879(95)51114-8

M. P. Fitzgerald, J. M. Madsen, M. C. Coleman, M. L. Teoh, S. G. Westphal et al., Transgenic Biosynthesis of Trypanothione Protects Escherichia coli from Radiation-Induced Toxicity, Radiation Research, vol.174, issue.3, pp.174-290, 2010.
DOI : 10.1667/RR2235.1

R. L. Krauth-siegel, S. K. Meiering, and H. Schmidt, The Parasite-Specific Trypanothione Metabolism of Trypanosoma and Leishmania, Biological Chemistry, vol.384, issue.4, pp.539-549, 2003.
DOI : 10.1515/BC.2003.062

R. L. Krauth-siegel, H. Bauer, and R. H. Schirmer, Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia, Angew. Chem. Int. Ed. Engl, pp.44-690, 2005.

S. R. Wilkinson and J. M. Kelly, The Role of Glutathione Peroxidases in Trypanosomatids, Biological Chemistry, vol.384, issue.4, pp.517-525, 2003.
DOI : 10.1515/BC.2003.060

]. T. Jaeger and L. Flohé, The thiol-based redox networks of pathogens: Unexploited targets in the search for new drugs, BioFactors, vol.358, issue.1-4, pp.109-120, 2006.
DOI : 10.1002/biof.5520270110

L. Flohé, The trypanothione system and the opportunities it offers to create drugs for the neglected kinetoplast diseases, Biotechnology Advances, vol.30, issue.1, pp.294-301, 2012.
DOI : 10.1016/j.biotechadv.2011.05.012

H. Lüdemann, M. Dormeyer, C. Sticherling, D. Stallmann, H. Follmann et al., Trypanosoma brucei tryparedoxin, a thioredoxin-like protein in African trypanosomes, FEBS Lett, pp.431-381, 1998.

H. Budde, L. Flohé, H. Hecht, B. Hofmann, M. Stehr et al., Kinetics and Redox-Sensitive Oligomerisation Reveal Negative Subunit Cooperativity in Tryparedoxin Peroxidase of Trypanosoma brucei brucei, Biological Chemistry, vol.384, issue.4, pp.384-619, 2003.
DOI : 10.1515/BC.2003.069

T. Schlecker, M. A. Comini, J. Melchers, T. Ruppert, and R. L. Krauth-siegel, Catalytic mechanism of the glutathione peroxidase-type tryparedoxin peroxidase of Trypanosoma brucei, Biochem. J, pp.405-445, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478763

J. Melchers, N. Dirdjaja, T. Ruppert, and R. L. Krauth-siegel, Glutathionylation of Trypanosomal Thiol Redox Proteins, Journal of Biological Chemistry, vol.282, issue.12, pp.8678-8694, 2007.
DOI : 10.1074/jbc.M608140200

C. Fraser-l-'hostis, F. Defrise-quertain, D. Coral, and J. Deshusses, Regulation of the intracellular pH in the protozoan parasite Trypanosoma brucei brucei, Biol. Chem, vol.378, pp.1039-1046, 1997.

A. Schmidt, C. E. Clayton, and R. L. Krauth-siegel, Silencing of the thioredoxin gene in Trypanosoma brucei brucei, Molecular and Biochemical Parasitology, vol.125, issue.1-2, pp.207-210, 2002.
DOI : 10.1016/S0166-6851(02)00215-3

S. R. Wilkinson, M. C. Taylor, S. Touitha, I. L. Mauricio, D. J. Meyer et al., TcGPXII, a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides, is localized to the endoplasmic reticulum, Biochemical Journal, vol.364, issue.3, pp.364-787, 2002.
DOI : 10.1042/bj20020038

H. Hillebrand, A. Schmidt, and R. L. Krauth-siegel, A Second Class of Peroxidases Linked to the Trypanothione Metabolism, Journal of Biological Chemistry, vol.278, issue.9, pp.6809-6815, 2003.
DOI : 10.1074/jbc.M210392200

H. Castro, H. Budde, L. Flohé, B. Hofmann, H. Lünsdorf et al., Specificity and kinetics of a mitochondrial peroxiredoxin of Leishmania infantum, Free Radic, Biol. Med, pp.33-1563, 2002.

M. Diechtierow and R. L. Krauth-siegel, A tryparedoxin-dependent peroxidase protects African trypanosomes from membrane damage, Free Radic, Biol. Med, vol.51, pp.856-868, 2011.

S. Adak and S. , Ascorbate peroxidase acts as a novel determiner of redox homeostasis in Leishmania, Antioxid. Redox Signal, 2012.

M. A. Comini, R. L. Krauth-siegel, and L. Flohé, Depletion of the thioredoxin homologue tryparedoxin impairs antioxidative defence in African trypanosomes, Biochemical Journal, vol.402, issue.1, pp.402-445, 2007.
DOI : 10.1042/BJ20061341

URL : https://hal.archives-ouvertes.fr/hal-00478658

S. Romao, H. Castro, C. Sousa, S. Carvalho, and A. M. Tomás, The cytosolic tryparedoxin of Leishmania infantum is essential for parasite survival, International Journal for Parasitology, vol.39, issue.6, pp.39-703, 2009.
DOI : 10.1016/j.ijpara.2008.11.009

M. Saitoh, H. Nishitoh, M. Fujii, K. Takeda, K. Tobiume et al., Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1, The EMBO Journal, vol.17, issue.9, pp.2596-2606, 1998.
DOI : 10.1093/emboj/17.9.2596

Y. Funato and H. Miki, Redox regulation of Wnt signalling via nucleoredoxin, Free Radical Research, vol.10, issue.4, pp.379-388, 2010.
DOI : 10.1101/gad.9.9.1087

A. Delaunay, D. Pflieger, M. B. Barrault, J. Vinh, and M. B. Toledano, A Thiol Peroxidase Is an H2O2 Receptor and Redox-Transducer in Gene Activation, Cell, vol.111, issue.4, pp.471-481, 2002.
DOI : 10.1016/S0092-8674(02)01048-6

J. Shlomai, Redox Control of Protein???DNA Interactions: From Molecular Mechanisms to Significance in Signal Transduction, Gene Expression, and DNA Replication, Antioxidants & Redox Signaling, vol.13, issue.9, pp.1429-1476, 2010.
DOI : 10.1089/ars.2009.3029

I. Onn, N. Milman-shtepel, and J. Shlomai, Redox Potential Regulates Binding of Universal Minicircle Sequence Binding Protein at the Kinetoplast DNA Replication Origin, Eukaryotic Cell, vol.3, issue.2, pp.277-287, 2004.
DOI : 10.1128/EC.3.2.277-287.2004

N. Milman, S. A. Motyka, P. T. Englund, D. Robinson, and J. Shlomai, Mitochondrial origin-binding protein UMSBP mediates DNA replication and segregation in trypanosomes, Proceedings of the National Academy of Sciences, vol.104, issue.49, pp.19250-19255, 2007.
DOI : 10.1073/pnas.0706858104

H. Castro, F. Teixeira, S. Romao, M. Santos, T. Cruz et al., Leishmania Mitochondrial Peroxiredoxin Plays a Crucial Peroxidase-Unrelated Role during Infection: Insight into Its Novel Chaperone Activity, PLoS Pathogens, vol.136, issue.3, p.1002325, 2011.
DOI : 10.1371/journal.ppat.1002325.s007

A. M. Tomás and H. Castro, Redox Metabolism in Mitochondria of Trypanosomatids, Antioxidants & Redox Signaling, vol.19, issue.7, 2012.
DOI : 10.1089/ars.2012.4948

R. Brigelius-flohé and L. Flohé, Basic Principles and Emerging Concepts in the Redox Control of Transcription Factors, Antioxidants & Redox Signaling, vol.15, issue.8, pp.2335-2381, 2011.
DOI : 10.1089/ars.2010.3534

D. G. Arias, M. S. Cabeza, E. D. Erben, P. G. Carranza, H. D. Lujan et al., Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp. Free Radic, Biol. Med, pp.50-87, 2011.

M. D. Piñeyro, A. Parodi-talice, M. Portela, D. G. Arias, S. A. Guerrero et al., Molecular characterization and interactome analysis of Trypanosoma cruzi Tryparedoxin 1, Journal of Proteomics, vol.74, issue.9, pp.1683-1692, 2011.
DOI : 10.1016/j.jprot.2011.04.006

E. Ströher and A. H. Millar, The biological roles of glutaredoxins, Biochemical Journal, vol.34, issue.3, pp.333-348, 2012.
DOI : 10.1021/pr060564n

N. Rouhier, J. Couturier, M. K. Johnson, and J. Jacquot, Glutaredoxins: roles in iron homeostasis, Trends in Biochemical Sciences, vol.35, issue.1, pp.43-52, 2010.
DOI : 10.1016/j.tibs.2009.08.005

M. A. Comini, L. Krauth-siegel, and M. Bellanda, Mono-and Dithiol Glutaredoxins in the Trypanothione-based Redox Metabolism of Pathogenic Trypanosomes press) Electronic Publication ahead of print, Antioxid. Redox Signal

M. M. Gallogly, D. W. Starke, and J. J. , Mechanistic and Kinetic Details of Catalysis of Thiol-Disulfide Exchange by Glutaredoxins and Potential Mechanisms of Regulation, Antioxidants & Redox Signaling, vol.11, issue.5, pp.1059-1081, 2009.
DOI : 10.1089/ars.2008.2291

E. Herrero, G. Bellí, and C. Casa, Structural and Functional Diversity of Glutaredoxins in Yeast, Current Protein & Peptide Science, vol.11, issue.8, pp.659-668, 2010.
DOI : 10.2174/138920310794557637

K. S. Jensen, R. E. Hansen, and J. R. Winther, Kinetic and Thermodynamic Aspects of Cellular Thiol???Disulfide Redox Regulation, Antioxidants & Redox Signaling, vol.11, issue.5, pp.1047-1058, 2009.
DOI : 10.1089/ars.2008.2297

M. Luo, Y. Jiang, X. Ma, Y. Tang, Y. He et al., Structural and Biochemical Characterization of Yeast Monothiol Glutaredoxin Grx6, Journal of Molecular Biology, vol.398, issue.4, pp.398-614, 2010.
DOI : 10.1016/j.jmb.2010.03.029

N. Mesecke, A. Spang, M. Deponte, and J. M. Herrmann, A Novel Group of Glutaredoxins in the cis-Golgi Critical for Oxidative Stress Resistance, Molecular Biology of the Cell, vol.19, issue.6, pp.2673-2680, 2008.
DOI : 10.1091/mbc.E07-09-0896

M. Deponte, K. Becker, and S. Rahlfs, Plasmodium falciparum glutaredoxin-like proteins, Biological Chemistry, vol.386, issue.1, pp.33-40, 2005.
DOI : 10.1515/BC.2005.005

A. P. Fernandes, M. Fladvad, C. Berndt, C. Andrésen, C. H. Lillig et al., Vlamis-Gardikas, A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase, J. Biol. Chem, pp.280-24544, 2005.

M. Filser, M. A. Comini, M. M. Molina-navarro, N. Dirdjaja, E. Herrero et al., Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1, Biological Chemistry, vol.389, issue.1, pp.389-410, 2008.
DOI : 10.1515/BC.2007.147

C. Johansson, A. K. Roos, S. J. Montano, R. Sengupta, P. Filippakopoulos et al., The crystal structure of human GLRX5: iron???sulfur cluster co-ordination, tetrameric assembly and monomer activity, Biochemical Journal, vol.252, issue.2, pp.433-303, 2011.
DOI : 10.1021/bi801859b

S. Rahlfs, M. Fischer, and K. Becker, Plasmodium falciparum Possesses a Classical Glutaredoxin and a Second, Glutaredoxin-like Protein with a PICOT Homology Domain, Journal of Biological Chemistry, vol.276, issue.40, pp.276-37133, 2001.
DOI : 10.1074/jbc.M105524200

J. Tamarit, G. Belli, E. Cabiscol, E. Herrero, and J. Ros, Biochemical Characterization of Yeast Mitochondrial Grx5 Monothiol Glutaredoxin, Journal of Biological Chemistry, vol.278, issue.28, pp.278-25745, 2003.
DOI : 10.1074/jbc.M303477200

C. Johansson, K. L. Kavanagh, O. Gileadi, and U. Oppermann, Reversible Sequestration of Active Site Cysteines in a 2Fe-2S-bridged Dimer Provides a Mechanism for Glutaredoxin 2 Regulation in Human Mitochondria, Journal of Biological Chemistry, vol.282, issue.5, pp.282-3077, 2007.
DOI : 10.1074/jbc.M608179200

D. W. Lee, D. Kaur, S. J. Chinta, S. Rajagopalan, and J. K. Andersen, Inhibition of Mitochondrial Dithiol Glutaredoxin 2 May Contribute to Mitochondrial and Cellular Iron Dysregulation in Mammalian Glutathione-Depleted Dopaminergic Cells: Implications for Parkinson's Disease, Antioxidants & Redox Signaling, vol.11, issue.9, pp.2083-2094, 2009.
DOI : 10.1089/ars.2009.2489

M. A. Comini, J. Rettig, N. Dirdjaja, E. Hanschmann, C. Berndt et al., Monothiol Glutaredoxin-1 Is an Essential Iron-Sulfur Protein in the Mitochondrion of African Trypanosomes, Journal of Biological Chemistry, vol.283, issue.41, pp.283-27785, 2008.
DOI : 10.1074/jbc.M802010200

T. Iwema, A. Picciocchi, D. A. Traore, J. Ferrer, F. Chauvat et al., Structural Basis for Delivery of the Intact [Fe2S2] Cluster by Monothiol Glutaredoxin, Biochemistry, vol.48, issue.26, pp.6041-6043, 2009.
DOI : 10.1021/bi900440m

M. Fladvad, M. Bellanda, A. P. Fernandes, S. Mammi, A. Vlamis-gardikas et al., Molecular Mapping of Functionalities in the Solution Structure of Reduced Grx4, a Monothiol Glutaredoxin from Escherichia coli, Journal of Biological Chemistry, vol.280, issue.26, pp.280-24553, 2005.
DOI : 10.1074/jbc.M500679200

N. Yeung, B. Gold, N. L. Liu, R. Prathapam, H. J. Sterling et al., Monothiol Glutaredoxin GrxD Forms Homodimeric and Heterodimeric FeS Cluster Containing Complexes, Biochemistry, vol.50, issue.41, pp.8957-8969, 2011.
DOI : 10.1021/bi2008883

I. Schuppe-koistinen, R. Gerdes, P. Moldéus, and I. A. Cotgreave, Studies on the Reversibility of Protein S-Thiolation in Human Endothelial Cells, Arch. Biochem. Biophys, pp.315-226, 1994.
DOI : 10.1007/978-1-4613-0355-8_71

E. Jortzik, L. Wang, and K. Becker, Thiol-Based Posttranslational Modifications in Parasites, Antioxidants & Redox Signaling, vol.17, issue.4, pp.657-673, 2012.
DOI : 10.1089/ars.2011.4266

Y. Xiong, J. D. Uys, K. D. Tew, and D. M. Townsend, S-Glutathionylation: From Molecular Mechanisms to Health Outcomes, Antioxidants & Redox Signaling, vol.15, issue.1, pp.233-270, 2011.
DOI : 10.1089/ars.2010.3540

P. Ghezzi, Regulation of Protein Function by Glutathionylation, Free Radic. Res, vol.39, pp.573-580, 2005.
DOI : 10.1002/9780470475973.ch9

S. Casagrande, V. Bonetto, M. Fratelli, E. Gianazza, I. Eberini et al., Glutathionylation of human thioredoxin: A possible crosstalk between the glutathione and thioredoxin systems, Proceedings of the National Academy of Sciences, vol.99, issue.15, pp.99-9745, 2002.
DOI : 10.1073/pnas.152168599

B. Chiang, T. Chen, C. Pai, C. Chou, H. Chen et al., Protein S-Thiolation by Glutathionylspermidine (Gsp): THE ROLE OF ESCHERICHIA COLI Gsp SYNTHETASE/AMIDASE IN REDOX REGULATION, Journal of Biological Chemistry, vol.285, issue.33, pp.285-25345, 2010.
DOI : 10.1074/jbc.M110.133363

R. Lill and U. Mühlenhoff, Maturation of Iron-Sulfur Proteins in Eukaryotes: Mechanisms, Connected Processes, and Diseases, Annual Review of Biochemistry, vol.77, issue.1, pp.669-700, 2008.
DOI : 10.1146/annurev.biochem.76.052705.162653

H. Ye and T. A. Rouault, Human Iron???Sulfur Cluster Assembly, Cellular Iron Homeostasis, and Disease, Biochemistry, vol.49, issue.24, pp.4945-4956, 2010.
DOI : 10.1021/bi1004798

X. M. Xu and S. G. Møller, Iron???Sulfur Clusters: Biogenesis, Molecular Mechanisms, and Their Functional Significance, Antioxidants & Redox Signaling, vol.15, issue.1, pp.271-307, 2011.
DOI : 10.1089/ars.2010.3259

B. Py and F. Barras, Building Fe???S proteins: bacterial strategies, Nature Reviews Microbiology, vol.28, issue.6, pp.436-446, 2010.
DOI : 10.1038/nrmicro2356

C. Berndt, C. Hudemann, E. Hanschmann, R. Axelsson, A. Holmgren et al., How Does Iron???Sulfur Cluster Coordination Regulate the Activity of Human Glutaredoxin 2?, Antioxidants & Redox Signaling, vol.9, issue.1, pp.151-157, 2007.
DOI : 10.1089/ars.2007.9.151

C. H. Lillig, C. Berndt, O. Vergnolle, M. E. Lönn, C. Hudemann et al., Characterization of human glutaredoxin 2 as iron-sulfur protein: A possible role as redox sensor, Proceedings of the National Academy of Sciences, vol.102, issue.23, pp.8168-8173, 2005.
DOI : 10.1073/pnas.0500735102

S. Mitra and S. J. Elliott, Oxidative Disassembly of the [2Fe-2S] Cluster of Human Grx2 and Redox Regulation in the Mitochondria, Biochemistry, vol.48, issue.18, pp.3813-3815, 2009.
DOI : 10.1021/bi900112m

U. Mühlenhoff, S. Molik, J. R. Godoy, M. A. Uzarska, N. Richter et al., Cytosolic Monothiol Glutaredoxins Function in Intracellular Iron Sensing and Trafficking via Their Bound Iron-Sulfur Cluster, Cell Metabolism, vol.12, issue.4, pp.373-385, 2010.
DOI : 10.1016/j.cmet.2010.08.001

H. Li, D. T. Mapolelo, N. N. Dingra, S. G. Naik, N. S. Lees et al., The Yeast Iron Regulatory Proteins Grx3/4 and Fra2 Form Heterodimeric Complexes Containing a [2Fe-2S] Cluster with Cysteinyl and Histidyl Ligation, Biochemistry, vol.48, issue.40, pp.9569-9581, 2009.
DOI : 10.1021/bi901182w

H. Li and C. E. Outten, Monothiol CGFS Glutaredoxins and BolA-like Proteins: [2Fe-2S] Binding Partners in Iron Homeostasis, Biochemistry, vol.51, issue.22, pp.4377-4389, 2012.
DOI : 10.1021/bi300393z

S. Bandyopadhyay, F. Gama, M. M. Molina-navarro, J. M. Gualberto, R. Claxton et al., Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe???2S] clusters, The EMBO Journal, vol.171, issue.7, pp.1122-1133, 2008.
DOI : 10.1038/emboj.2008.50

URL : https://hal.archives-ouvertes.fr/hal-00309513

P. Shakamuri, B. Zhang, and M. K. Johnson, Monothiol glutaredoxins function in storing and transporting [Fe(2)S(2)] clusters assembled on IscU scaffold proteins, J. Am. Chem. Soc, pp.134-15213, 2012.

L. Wang, B. Ouyang, Y. Li, Y. Feng, J. Jacquot et al., Glutathione regulates the transfer of iron-sulfur cluster from monothiol and dithiol glutaredoxins to apo ferredoxin, Protein & Cell, vol.6, issue.9, pp.714-721, 2012.
DOI : 10.1007/s13238-012-2051-4

D. Mapolelo, B. Zhang, S. Randeniya, A. Albetel, H. Li et al., Monothiol glutaredoxins and A-type proteins: partners in Fe???S cluster trafficking, Dalton Transactions, vol.279, issue.9, pp.42-3107, 2013.
DOI : 10.1039/c2dt32263c

URL : https://hal.archives-ouvertes.fr/hal-01268219

N. Cheng, J. Liu, X. Liu, Q. Wu, S. M. Thompson et al., Arabidopsis Monothiol Glutaredoxin, AtGRXS17, Is Critical for Temperature-dependent Postembryonic Growth and Development via Modulating Auxin Response, Journal of Biological Chemistry, vol.286, issue.23, pp.20398-20406, 2011.
DOI : 10.1074/jbc.M110.201707

A. Izquierdo, C. Casas, U. Mühlenhoff, C. H. Lillig, and E. Herrero, Saccharomyces cerevisiae Grx6 and Grx7 Are Monothiol Glutaredoxins Associated with the Early Secretory Pathway, Eukaryotic Cell, vol.7, issue.8, pp.1415-1426, 2008.
DOI : 10.1128/EC.00133-08

O. Smíd, E. Horáková, V. Vilímová, I. Hrdy, R. Cammack et al., Knock-downs of Iron-Sulfur Cluster Assembly Proteins IscS and IscU Down-regulate the Active Mitochondrion of Procyclic Trypanosoma brucei, Journal of Biological Chemistry, vol.281, issue.39, pp.281-28679, 2006.
DOI : 10.1074/jbc.M513781200

S. Long, M. Jirku, F. J. Ayala, and J. Lukes, Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei, Proceedings of the National Academy of Sciences, vol.105, issue.36, pp.13468-13473, 2008.
DOI : 10.1073/pnas.0806762105

S. Long, Z. Vávrová, and J. Lukes, The import and function of diatom and plant frataxins in the mitochondrion of Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.162, issue.1, pp.100-104, 2008.
DOI : 10.1016/j.molbiopara.2008.08.001

S. Long, M. Jirk?, J. Mach, M. L. Ginger, R. Sutak et al., Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes, Mol. Microbiol, pp.69-94, 2008.

S. Long, P. Changmai, A. D. Tsaousis, T. Skalický, Z. Verner et al., Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues, Molecular Microbiology, vol.273, issue.6, pp.81-1403, 2011.
DOI : 10.1111/j.1365-2958.2011.07769.x

R. Lill, B. Hoffmann, S. Molik, A. J. Pierik, N. Rietzschel et al., The role of mitochondria in cellular iron???sulfur protein biogenesis and iron metabolism, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.9, pp.1491-1508, 2012.
DOI : 10.1016/j.bbamcr.2012.05.009

Z. Paris, P. Changmai, M. A. Rubio, A. Zíková, K. D. Stuart et al., The Fe/S Cluster Assembly Protein Isd11 Is Essential for tRNA Thiolation in Trypanosoma brucei, Journal of Biological Chemistry, vol.285, issue.29, pp.285-22394, 2010.
DOI : 10.1074/jbc.M109.083774

A. K. Panigrahi, Y. Ogata, A. Zíková, A. Anupama, R. A. Dalley et al., A comprehensive analysis of Trypanosoma brucei mitochondrial proteome, PROTEOMICS, vol.28, issue.7, pp.434-450, 2009.
DOI : 10.1002/pmic.200800477

B. Hoffmann, M. A. Uzarska, C. Berndt, J. R. Godoy, P. Haunhorst et al., The Multidomain Thioredoxin-Monothiol Glutaredoxins Represent a Distinct Functional Group, Antioxidants & Redox Signaling, vol.15, issue.1, pp.19-30, 2011.
DOI : 10.1089/ars.2010.3811

O. Kakhlon and Z. I. Cabantchik, The labile iron pool: characterization, measurement, and participation in cellular processes(1), Free Radic, Biol. Med, vol.33, pp.1037-1046, 2002.

R. C. Hider and X. L. Kong, Glutathione: a key component of the cytoplasmic labile iron pool, BioMetals, vol.120, issue.17, pp.1179-1187, 2011.
DOI : 10.1007/s10534-011-9476-8

C. Kumar, A. Igbaria, B. D. Autreaux, A. Planson, C. Junot et al., Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control, The EMBO Journal, vol.275, issue.10, pp.2044-2056, 2011.
DOI : 10.1038/emboj.2011.105

URL : https://hal.archives-ouvertes.fr/hal-00606359

W. Qi, J. Li, C. Y. Chain, G. A. Pasquevich, A. F. Pasquevich et al., Glutathione Complexed Fe???S Centers, Journal of the American Chemical Society, vol.134, issue.26, pp.134-10745, 2012.
DOI : 10.1021/ja302186j

W. Qi and J. A. Cowan, Mechanism of glutaredoxin???ISU [2Fe???2S] cluster exchange, Chemical Communications, vol.41, issue.17, pp.4989-4991, 2011.
DOI : 10.1039/c0cc05079b

M. N. Möller, Q. Li, D. A. Vitturi, J. M. Robinson, J. R. Lancaster-jr et al., Reaction, Chemical Research in Toxicology, vol.20, issue.4, pp.709-714, 2007.
DOI : 10.1021/tx700010h

J. A. Mccleverty, Chemistry of Nitric Oxide Relevant to Biology, Chemical Reviews, vol.104, issue.2, pp.403-418, 2004.
DOI : 10.1021/cr020623q

E. Jortzik and K. Becker, Thioredoxin and glutathione systems in Plasmodium falciparum, International Journal of Medical Microbiology, vol.302, issue.4-5, pp.187-194, 2012.
DOI : 10.1016/j.ijmm.2012.07.007

S. P. Singh, J. S. Wishnok, M. Keshive, W. M. Deen, and S. R. Tannenbaum, The chemistry of the S-nitrosoglutathione/glutathione system, Proceedings of the National Academy of Sciences, vol.93, issue.25, pp.93-14428, 1996.
DOI : 10.1073/pnas.93.25.14428

W. Lu, G. Wei, W. Pan, and H. , Trypanosoma congolense infections: induced nitric oxide inhibits parasite growth in vivo, J. Parasitol. Res, pp.2011-316067, 2011.

D. Steverding, X. Wang, and D. W. Sexton, The trypanocidal effect of NO-releasing agents is not due to inhibition of the major cysteine proteinase in Trypanosoma brucei, Parasitology Research, vol.75, issue.5, pp.1333-1338, 2009.
DOI : 10.1007/s00436-009-1559-x

A. Bocedi, K. F. Dawood, R. Fabrini, G. Federici, L. Gradoni et al., Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites, The FASEB Journal, vol.24, issue.4, pp.1035-1042, 2010.
DOI : 10.1096/fj.09-146407

M. A. Keese, M. Böse, A. Mülsch, R. H. Schirmer, and K. Becker, Dinitrosyl-Dithiol-Iron Complexes, Nitric Oxide (NO) Carriers In Vivo, as Potent Inhibitors of Human Glutathione Reductase and Glutathione-S-Transferase, Biochemical Pharmacology, vol.54, issue.12, pp.54-1307, 1997.
DOI : 10.1016/S0006-2952(97)00348-1

B. Testa and S. D. Krämer, The Biochemistry of Drug Metabolism - An Introduction, Chemistry & Biodiversity, vol.5, issue.11, pp.2171-2336, 2008.
DOI : 10.1002/cbdv.200890199

B. Plumas-marty, C. Verwaerde, M. Loyens, P. Velge, A. Taibi et al., Trypanosoma cruzi glutathione-binding proteins: immunogenicity during human and experimental Chagas' disease, Parasitology, vol.92, issue.01, pp.87-98, 1992.
DOI : 10.1021/bi00591a005

B. Plumas-marty, R. Schöneck, O. Billaut-mulot, A. Taibi, A. Capron et al., Molecular cloning of a Trypanosoma cruzi cDNA encoding a protein homologous with mammalian elongation factor 1 beta, Parasitol. Res, pp.80-626, 1994.

R. Schöneck, B. Plumas-marty, A. Taibi, O. Billaut-mulot, M. Loyens et al., Trypanosoma cruzi cDNA encodes a tandemly repeated domain structure characteristic of small stress proteins and glutathione S-transferases, Biology of the Cell, vol.80, issue.1, pp.1-10, 1994.
DOI : 10.1016/0248-4900(94)90011-6

M. Moutiez, M. Aumercier, R. Schöneck, D. Meziane-cherif, V. Lucas et al., Purification and characterization of a trypanothione-glutathione thioltransferase from Trypanosoma cruzi, Biochem. J, issue.2, pp.310-433, 1995.

M. Moutiez, M. Aumercier, B. Parmentier, A. Tartar, and C. Sergheraert, Compared recognition of di- and trisulfide substrates by glutathione and trypanothione reductases, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1245, issue.2, pp.161-166, 1995.
DOI : 10.1016/0304-4165(95)00085-P

M. Moutiez, E. Quéméneur, C. Sergheraert, V. Lucas, A. Tartar et al., Glutathione-dependent activities of Trypanosoma cruzi p52 makes it a new member of the thiol:disulphide oxidoreductase family, Biochemical Journal, vol.322, issue.1, pp.43-48, 1997.
DOI : 10.1042/bj3220043

M. A. Ouaissi, J. F. Dubremetz, R. Schöneck, R. Fernandez-gomez, R. Gomez-corvera et al., Trypanosoma cruzi: A 52-kDa Protein Sharing Sequence Homology with Glutathione S-Transferase Is Localized in Parasite Organelles Morphologically Resembling Reservosomes, Experimental Parasitology, vol.81, issue.4, pp.81-453, 1995.
DOI : 10.1006/expr.1995.1138

A. Allaoui, C. François, K. Zemzoumi, E. Guilvard, and A. Ouaissi, Intracellular growth and metacyclogenesis defects in Trypanosoma cruzi carrying a targeted deletion of a Tc52 protein-encoding allele, Molecular Microbiology, vol.151, issue.6, pp.32-1273, 1999.
DOI : 10.1093/nar/24.15.2942

A. Ouaissi, E. Guilvard, Y. Delneste, G. Caron, G. Magistrelli et al., The Trypanosoma cruzi Tc52-Released Protein Induces Human Dendritic Cell Maturation, Signals Via Toll-Like Receptor 2, and Confers Protection Against Lethal Infection, The Journal of Immunology, vol.168, issue.12, pp.168-6366, 2002.
DOI : 10.4049/jimmunol.168.12.6366

]. A. Ouaissi, A. C. Da-silva, A. G. Guevara, M. Borges, and E. Guilvard, Trypanosoma Cruzi-Induced Host Immune System Dysfunction: A Rationale for Parasite Immunosuppressive Factor(s) Encoding Gene Targeting, Journal of Biomedicine and Biotechnology, vol.1, issue.1, pp.11-17, 2001.
DOI : 10.1155/S1110724301000055

M. Borges, E. Guilvard, A. Cordeiro-da-silva, B. Vergnes, K. Zemzoumi et al., Endogenous Trypanosoma cruzi Tc52 protein expression upregulates the growth of murine macrophages and fibroblasts and cytokine gene expression, Immunology Letters, vol.78, issue.3, pp.78-127, 2001.
DOI : 10.1016/S0165-2478(01)00248-6

E. Garzón, M. C. Borges, A. Cordeiro-da-silva, V. Nacife, M. De et al., Trypanosoma cruzi carrying a targeted deletion of a Tc52 protein-encoding allele elicits attenuated Chagas' disease in mice, Immunology Letters, vol.89, issue.1, pp.67-80, 2003.
DOI : 10.1016/S0165-2478(03)00112-3

A. Ouaissi, M. Ouaissi, J. Tavares, and A. Cordeiro-da-silva, Host Cell Phenotypic Variability Induced by Trypanosomatid-Parasite-Released Immunomodulatory Factors: Physiopathological Implications, Journal of Biomedicine and Biotechnology, vol.2004, issue.3, pp.2004-167, 2004.
DOI : 10.1155/S1110724304311034

H. Denton, J. C. Mcgregor, and G. H. Coombs, Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1, Biochemical Journal, vol.381, issue.2, pp.381-405, 2004.
DOI : 10.1042/BJ20040283

P. K. Fyfe, G. D. Westrop, A. M. Silva, G. H. Coombs, and W. N. Hunter, Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation, Proceedings of the National Academy of Sciences, vol.109, issue.29, pp.11693-11698, 2012.
DOI : 10.1073/pnas.1202593109

A. M. Silva, J. Tavares, R. Silvestre, A. Ouaissi, G. H. Coombs et al., Characterization of Leishmania infantum thiol-dependent reductase 1 and evaluation of its potential to induce immune protection, Parasite Immunology, vol.185, issue.6, pp.345-350, 2012.
DOI : 10.1111/j.1365-3024.2012.01361.x

T. J. Vickers and A. H. Fairlamb, Trypanothione S-Transferase Activity in a Trypanosomatid Ribosomal Elongation Factor 1B, Journal of Biological Chemistry, vol.279, issue.26, pp.27246-27256, 2004.
DOI : 10.1074/jbc.M311039200

T. J. Vickers, S. Wyllie, and A. H. Fairlamb, Leishmania major Elongation Factor 1B Complex Has Trypanothione S-Transferase and Peroxidase Activity, Journal of Biological Chemistry, vol.279, issue.47, pp.279-49003, 2004.
DOI : 10.1074/jbc.M407958200

P. M. Loiseau, P. Lubert, and J. G. Wolf, Contribution of Dithiol Ligands to In Vitro and In Vivo Trypanocidal Activities of Dithiaarsanes and Investigation of Ligand Exchange in an Aqueous Solution, Antimicrobial Agents and Chemotherapy, vol.44, issue.11, pp.44-2954, 2000.
DOI : 10.1128/AAC.44.11.2954-2961.2000

G. L. Newton, S. S. Leung, J. I. Wakabayashi, M. Rawat, and R. C. Fahey, -Transferases, Biochemistry, vol.50, issue.49, pp.10751-10760, 2011.
DOI : 10.1021/bi201460j

URL : https://hal.archives-ouvertes.fr/in2p3-00608259

M. A. Rajão, D. G. Passos-silva, W. D. Darocha, G. R. Franco, A. M. Macedo et al., DNA polymerase kappa from Trypanosoma cruzi localizes to the mitochondria, bypasses 8-oxoguanine lesions and performs DNA synthesis in a recombination intermediate, Mol. Microbiol, pp.71-185, 2009.

A. Ariza, T. J. Vickers, N. Greig, K. A. Armour, M. J. Dixon et al., Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme, Molecular Microbiology, vol.261, issue.4, pp.59-1239, 2006.
DOI : 10.1021/jm00287a006

L. Barata, M. Sousa-silva, L. Schuldt, A. E. Ferreira, R. A. Gomes et al., Enlightening the molecular basis of trypanothione specificity in trypanosomatids: Mutagenesis of Leishmania infantum glyoxalase II, Experimental Parasitology, vol.129, issue.4, pp.129-402, 2011.
DOI : 10.1016/j.exppara.2011.08.008

T. Irsch and R. L. Krauth-siegel, Glyoxalase II of African Trypanosomes Is Trypanothione-dependent, Journal of Biological Chemistry, vol.279, issue.21, pp.22209-22217, 2004.
DOI : 10.1074/jbc.M401240200