R. Brosch, S. Gordon, M. Marmiesse, P. Brodin, and C. Buchrieser, complex, Proceedings of the National Academy of Sciences, vol.99, issue.6, pp.3684-3689, 2002.
DOI : 10.1073/pnas.052548299

T. Wirth, F. Hildebrand, C. Allix-béguec, F. Wölbeling, and T. Kubica, Origin, Spread and Demography of the Mycobacterium tuberculosis Complex, PLoS Pathogens, vol.56, issue.9, p.1000160, 2008.
DOI : 10.1371/journal.ppat.1000160.s007

G. Canetti, Infection by atypical mycobacteria and antituberculous immunity, Lille Med, vol.15, pp.280-282, 1970.

D. Van-soolingen, T. Hoogenboezem, P. De-haas, P. Hermans, and M. Koedam, A Novel Pathogenic Taxon of the Mycobacterium tuberculosis Complex, Canetti: Characterization of an Exceptional Isolate from Africa, International Journal of Systematic Bacteriology, vol.47, issue.4, pp.1236-1245, 1997.
DOI : 10.1099/00207713-47-4-1236

S. Sreevatsan, X. Pan, K. Stockbauer, N. Connell, and B. Kreiswirth, Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination, Proceedings of the National Academy of Sciences, vol.94, issue.18, pp.9869-9874, 1997.
DOI : 10.1073/pnas.94.18.9869

S. Cole, R. Brosch, J. Parkhill, T. Garnier, and C. Churcher, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.25, issue.6685, pp.537-544, 1998.
DOI : 10.1038/31159

R. Fleishmann, D. Alland, J. Eisen, L. Carpenter, and O. White, Whole-Genome Comparison of Mycobacterium tuberculosis Clinical and Laboratory Strains, Journal of Bacteriology, vol.184, issue.19, pp.5479-5490, 2002.
DOI : 10.1128/JB.184.19.5479-5490.2002

T. Wirth, F. Hildebrand, C. Allix-béguec, F. Wölbeling, and T. Kubica, Origin, Spread and Demography of the Mycobacterium tuberculosis Complex, PLoS Pathogens, vol.56, issue.9, p.1000160, 2008.
DOI : 10.1371/journal.ppat.1000160.s007

M. Fabre, J. Koeck, L. Flèche, P. Simon, F. Hervé et al., High Genetic Diversity Revealed by Variable-Number Tandem Repeat Genotyping and Analysis of hsp65 Gene Polymorphism in a Large Collection of "Mycobacterium canettii" Strains Indicates that the M. tuberculosis Complex Is a Recently Emerged Clone of "M. canettii", Journal of Clinical Microbiology, vol.42, issue.7, pp.3248-3255, 2004.
DOI : 10.1128/JCM.42.7.3248-3255.2004

URL : https://hal.archives-ouvertes.fr/hal-01158318

M. Gutierrez, S. Brisse, R. Brosch, M. Fabre, and B. Oma?¨soma?¨s, Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis, PLoS Pathogens, vol.21, issue.1, p.5, 2005.
DOI : 10.1371/journal.ppat.0010005.st003

URL : https://hal.archives-ouvertes.fr/inserm-00080315

N. Smith, A Re-Evaluation of M. prototuberculosis, PLoS Pathogens, vol.99, issue.9, p.98, 2006.
DOI : 0027-8424(2002)099[3684:ANESFT]2.0.CO;2

S. Brisse, P. Supply, R. Brosch, V. Vincent, and M. Gutierrez, ???A Re-Evaluation of M. prototuberculosis???: Continuing the Debate, PLoS Pathogens, vol.37, issue.9, p.95, 2006.
DOI : 0020-7713(1987)037[0463:ICOSBR]2.0.CO;2

N. Smith, R. Hewinson, K. Kremer, R. Brosch, and S. Gordon, Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis, Nature Reviews Microbiology, vol.12, issue.7, pp.537-544, 2009.
DOI : 10.1097/01.aids.0000185991.54595.41

M. Fabre, Y. Hauck, C. Soler, J. Koeck, and J. Van-ingen, Molecular characteristics of ???Mycobacterium canettii??? the smooth Mycobacterium tuberculosis bacilli, Infection, Genetics and Evolution, vol.10, issue.8, pp.1165-1173, 2010.
DOI : 10.1016/j.meegid.2010.07.016

URL : https://hal.archives-ouvertes.fr/hal-00534312

P. Supply, M. Marceau, S. Mangenot, D. Roche, and C. Rouanet, Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis, Nature Genetics, vol.174, issue.2, pp.172-179, 2013.
DOI : 10.1093/infdis/jiq089

M. Brennan and G. Delogu, The PE multigene family: a ???molecular mantra??? for mycobacteria, Trends in Microbiology, vol.10, issue.5, pp.246-249, 2002.
DOI : 10.1016/S0966-842X(02)02335-1

C. Tian and X. Jian-ping, Roles of PE_PGRS family in Mycobacterium tuberculosis pathogenesis and novel measures against tuberculosis, Microbial Pathogenesis, vol.49, issue.6, pp.311-314, 2010.
DOI : 10.1016/j.micpath.2010.07.004

S. Sampson, Mycobacterial PE/PPE Proteins at the Host-Pathogen Interface, Clinical and Developmental Immunology, vol.5, issue.7, p.497203, 2011.
DOI : 10.1186/1471-2172-11-18

G. Van-pittius, N. Sampson, S. Lee, H. Kim, Y. Van-helden et al., Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions, BMC Evolutionary Biology, vol.6, issue.1, p.95, 2006.
DOI : 10.1186/1471-2148-6-95

A. Karboul, G. Van-pittius, N. Namouchi, A. Vincent, V. Sola et al., Insights into the evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE_PGRS duplicated gene pair, BMC Evolutionary Biology, vol.6, issue.1, p.107, 2006.
DOI : 10.1186/1471-2148-6-107

URL : https://hal.archives-ouvertes.fr/pasteur-00872178

S. Gordon, K. Eiglmeier, T. Garnier, R. Brosch, and J. Parkhill, Genomics of Mycobacterium bovis, Tuberculosis, vol.81, issue.1-2, pp.157-163, 2001.
DOI : 10.1054/tube.2000.0269

T. Garnier, K. Eiglmeier, J. Camus, N. Medina, and H. Mansoor, The complete genome sequence of Mycobacterium bovis, Proceedings of the National Academy of Sciences, vol.100, issue.13, pp.7877-7882, 2003.
DOI : 10.1073/pnas.1130426100

S. Talarico, M. Cave, C. Marrs, B. Foxman, and L. Zhang, Variation of the Mycobacterium tuberculosis PE_PGRS33 Gene among Clinical Isolates, Journal of Clinical Microbiology, vol.43, issue.10, pp.4954-4960, 2005.
DOI : 10.1128/JCM.43.10.4954-4960.2005

A. Hebert, S. Talarico, D. Yang, R. Durmaz, and C. Marrs, DNA Polymorphisms in the pepA and PPE18 Genes among Clinical Strains of Mycobacterium tuberculosis: Implications for Vaccine Efficacy, Infection and Immunity, vol.75, issue.12, pp.5798-5805, 2007.
DOI : 10.1128/IAI.00335-07

S. Talarico, L. Zhang, C. Marrs, B. Foxman, and M. Cave, Mycobacterium tuberculosis PE_PGRS16 and PE_PGRS26 genetic polymorphism among clinical isolates, Tuberculosis, vol.88, issue.4, pp.283-294, 2008.
DOI : 10.1016/j.tube.2008.01.001

A. Karboul, A. Mazza, G. Van-pittius, N. Ho, J. Brousseau et al., Frequent Homologous Recombination Events in Mycobacterium tuberculosis PE/PPE Multigene Families: Potential Role in Antigenic Variability, Journal of Bacteriology, vol.190, issue.23, pp.7838-7846, 2008.
DOI : 10.1128/JB.00827-08

URL : https://hal.archives-ouvertes.fr/pasteur-00871758

C. Mcevoy, P. Van-helden, R. Warren, G. Van-pittius, and N. , Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region, BMC Evolutionary Biology, vol.9, issue.1, p.237, 2009.
DOI : 10.1186/1471-2148-9-237

J. Wang, Y. Huang, A. Zhang, C. Zhu, and Z. Yang, DNA polymorphism of Mycobacterium tuberculosis PE_PGRS33 gene among clinical isolates of pediatric TB patients and its associations with clinical presentation, Tuberculosis, vol.91, issue.4, pp.287-292, 2011.
DOI : 10.1016/j.tube.2011.05.001

C. Mcevoy, R. Cloete, B. Müller, A. Schürch, and P. Van-helden, Comparative Analysis of Mycobacterium tuberculosis pe and ppe Genes Reveals High Sequence Variation and an Apparent Absence of Selective Constraints, PLoS ONE, vol.190, issue.Pt 12, p.30593, 2012.
DOI : 10.1371/journal.pone.0030593.s006

G. Delogu and M. Brennan, Comparative Immune Response to PE and PE_PGRS Antigens of Mycobacterium tuberculosis, Infection and Immunity, vol.69, issue.9, pp.5606-5611, 2001.
DOI : 10.1128/IAI.69.9.5606-5611.2001

S. Banu, N. Honoré, B. Saint-joanis, D. Philpott, and M. Prévost, Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens?, Molecular Microbiology, vol.66, issue.1, pp.9-19, 2002.
DOI : 10.1046/j.1365-2958.2002.02813.x

M. Strong, M. Sawaya, S. Wang, M. Phillips, and D. Cascio, Toward the structural genomics of complexes: Crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis, Proceedings of the National Academy of Sciences, vol.103, issue.21, pp.8060-8065, 2006.
DOI : 10.1073/pnas.0602606103

A. Abdallah, T. Verboom, F. Hannes, M. Safi, and M. Strong, A specific secretion system mediates PPE41 transport in pathogenic mycobacteria, Molecular Microbiology, vol.4, issue.3, pp.667-679, 2006.
DOI : 10.1126/science.1099384

J. Campuzano, D. Aguilar, K. Arriaga, J. León, and L. Salas-rangel, The PGRS domain of Mycobacterium tuberculosis, Vaccine, vol.25, issue.18, pp.3722-3729, 2007.
DOI : 10.1016/j.vaccine.2006.12.042

H. Målen, F. Berven, K. Fladmark, and H. Wiker, Comprehensive analysis of exported proteins fromMycobacterium tuberculosis H37Rv, PROTEOMICS, vol.11, issue.10, pp.1702-1718, 2007.
DOI : 10.1002/pmic.200600853

S. Reed, R. Coler, W. Dalemans, E. Tan, D. Cruz et al., Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys, Proceedings of the National Academy of Sciences, vol.106, issue.7, pp.2301-2306, 2009.
DOI : 10.1073/pnas.0712077106

H. Målen, S. Pathak, T. Søfteland, G. De-souza, and H. Wiker, Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv, BMC Microbiology, vol.10, issue.1, p.132, 2010.
DOI : 10.1186/1471-2180-10-132

L. Ramakrishnan, N. Federspiel, and S. Falkow, Granuloma-Specific Expression of Mycobacterium Virulence Proteins from the Glycine-Rich PE-PGRS Family, Science, vol.288, issue.5470, pp.1436-1439, 2000.
DOI : 10.1126/science.288.5470.1436

M. Brennan, G. Delogu, Y. Chen, S. Bardarov, and J. Kriakov, Evidence that Mycobacterial PE_PGRS Proteins Are Cell Surface Constituents That Influence Interactions with Other Cells, Infection and Immunity, vol.69, issue.12, pp.7326-7333, 2001.
DOI : 10.1128/IAI.69.12.7326-7333.2001

Y. Li, E. Miltner, M. Wu, M. Petrofsky, and L. Bermudez, A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice, Cellular Microbiology, vol.71, issue.4, pp.539-548, 2005.
DOI : 10.1111/j.1462-5822.2004.00484.x

J. Rengarajan, B. Bloom, and E. Rubin, From The Cover: Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages, Proceedings of the National Academy of Sciences, vol.102, issue.23, pp.8327-8332, 2005.
DOI : 10.1073/pnas.0503272102

G. Stewart, J. Patel, B. Robertson, R. A. Young, and D. , Mycobacterial Mutants with Defective Control of Phagosomal Acidification, PLoS Pathogens, vol.98, issue.3, pp.269-278, 2005.
DOI : 10.1371/journal.ppat.0010033.st004

P. Mehta, A. Pandey, S. Subbian, S. El-etr, and S. Cirillo, Identification of Mycobacterium marinum macrophage infection mutants, Microbial Pathogenesis, vol.40, issue.4, pp.139-151, 2006.
DOI : 10.1016/j.micpath.2005.12.002

P. Singh, M. Parra, N. Cadieux, and M. Brennan, A comparative study of host response to three Mycobacterium tuberculosis PE_PGRS proteins, Microbiology, vol.154, issue.11, pp.3469-3479, 2008.
DOI : 10.1099/mic.0.2008/019968-0

S. Jha, L. Danelishvili, D. Wagner, J. Maser, and Y. Li, Virulence-related Mycobacterium avium subsp hominissuis MAV_2928 gene is associated with vacuole remodeling in macrophages, BMC Microbiology, vol.10, issue.1, p.100, 2010.
DOI : 10.1186/1471-2180-10-100

P. Brodin, Y. Poquet, F. Levillain, I. Peguillet, and G. Larrouy-maumus, High Content Phenotypic Cell-Based Visual Screen Identifies Mycobacterium tuberculosis Acyltrehalose-Containing Glycolipids Involved in Phagosome Remodeling, PLoS Pathogens, vol.276, issue.Pt7, p.1001100, 2010.
DOI : 10.1371/journal.ppat.1001100.s005

R. Iantomasi, M. Sali, A. Cascioferro, I. Palucci, and A. Zumbo, PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis, Cellular Microbiology, vol.351, issue.3, pp.3563-3567, 2012.
DOI : 10.1111/j.1462-5822.2011.01721.x

K. Bansal, S. Elluru, Y. Narayana, R. Chaturvedi, and S. Patil, PE_PGRS Antigens of Mycobacterium tuberculosis Induce Maturation and Activation of Human Dendritic Cells, The Journal of Immunology, vol.184, issue.7, pp.3495-3504, 2010.
DOI : 10.4049/jimmunol.0903299

R. Chaturvedi, K. Bansal, Y. Narayana, N. Kapoor, and N. Sukumar, The Multifunctional PE_PGRS11 Protein from Mycobacterium tuberculosis Plays a Role in Regulating Resistance to Oxidative Stress, Journal of Biological Chemistry, vol.285, issue.40, pp.30389-30403, 2010.
DOI : 10.1074/jbc.M110.135251

N. Cadieux, M. Parra, H. Cohen, D. Maric, and S. Morris, Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein, Microbiology, vol.157, issue.3, pp.793-804, 2011.
DOI : 10.1099/mic.0.041996-0

D. Dong, D. Wang, M. Li, H. Wang, and J. Yu, PPE38 Modulates the Innate Immune Response and Is Required for Mycobacterium marinum Virulence, Infection and Immunity, vol.80, issue.1, pp.43-54, 2012.
DOI : 10.1128/IAI.05249-11

H. Zheng, L. Lu, B. Wang, X. Zhang, and G. Zhu, Genetic Basis of Virulence Attenuation Revealed by Comparative Genomic Analysis of Mycobacterium tuberculosis Strain H37Ra versus H37Rv, PLoS ONE, vol.99, issue.6, p.2375, 2008.
DOI : 10.1371/journal.pone.0002375.s008

H. Mardassi, A. Namouchi, R. Haltiti, M. Zarrouk, and B. Mhenni, Tuberculosis due to Resistant Haarlem Strain, Tunisia, Emerging Infectious Diseases, vol.11, issue.6, pp.957-961, 2005.
DOI : 10.3201/eid1106.041365

URL : https://hal.archives-ouvertes.fr/pasteur-00874087

J. Lew, A. Kapopoulou, L. Jones, and S. Cole, TubercuList ??? 10 years after, Tuberculosis, vol.91, issue.1, pp.1-7, 2011.
DOI : 10.1016/j.tube.2010.09.008

J. Rozas, J. Sánchez-delbarrio, X. Messeguer, and R. Rozas, DnaSP, DNA polymorphism analyses by the coalescent and other methods, Bioinformatics, vol.19, issue.18, pp.2496-2497, 2003.
DOI : 10.1093/bioinformatics/btg359

M. Nei and T. Gojobori, Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol Biol Evol, vol.3, pp.418-426, 1986.

F. Reed and S. Tishkoff, Positive Selection Can Create False Hotspots of Recombination, Genetics, vol.172, issue.3, pp.2011-2014, 2006.
DOI : 10.1534/genetics.105.052183

J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

A. Stamatakis, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, vol.22, issue.21, pp.2688-2690, 2006.
DOI : 10.1093/bioinformatics/btl446

I. Milne, D. Lindner, M. Bayer, D. Husmeier, and G. Mcguire, TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops, Bioinformatics, vol.25, issue.1, pp.126-127, 2009.
DOI : 10.1093/bioinformatics/btn575

W. Delport, A. Poon, S. Frost, K. Pond, and S. , Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology, Bioinformatics, vol.26, issue.19, pp.2455-2457, 2010.
DOI : 10.1093/bioinformatics/btq429

J. Felsenstein, Evolutionary trees from DNA sequences: A maximum likelihood approach, Journal of Molecular Evolution, vol.24, issue.6, pp.368-376, 1981.
DOI : 10.1007/BF01734359

D. De-vienne, T. Giraud, and O. Martin, A congruence index for testing topological similarity between trees, Bioinformatics, vol.23, issue.23, pp.3119-3124, 2007.
DOI : 10.1093/bioinformatics/btm500

D. Posada, Evaluation of Methods for Detecting Recombination from DNA Sequences: Empirical Data, Molecular Biology and Evolution, vol.19, issue.5, pp.708-717, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004129

H. Bandelt and A. Dress, Split decomposition: A new and useful approach to phylogenetic analysis of distance data, Molecular Phylogenetics and Evolution, vol.1, issue.3, pp.242-252, 1992.
DOI : 10.1016/1055-7903(92)90021-8

D. Huson and D. Bryant, Application of Phylogenetic Networks in Evolutionary Studies, Molecular Biology and Evolution, vol.23, issue.2, pp.254-267, 2006.
DOI : 10.1093/molbev/msj030

T. Bruen, H. Philippe, and D. Bryant, A Simple and Robust Statistical Test for Detecting the Presence of Recombination, Genetics, vol.172, issue.4, pp.2665-2681, 2006.
DOI : 10.1534/genetics.105.048975

R. Hudson and N. Kaplan, Statistical properties of the number of recombination events in the history of a sample of DNA sequences, Genetics, vol.111, pp.147-164, 1985.

M. Smith, Analyzing the mosaic structure of genes, Journal of Molecular Evolution, vol.34, issue.2, pp.126-129, 1992.
DOI : 10.1007/BF00182389

D. Martin and E. Rybicki, RDP: detection of recombination amongst aligned sequences, Bioinformatics, vol.16, issue.6, pp.562-563, 2000.
DOI : 10.1093/bioinformatics/16.6.562

K. Pond, S. Posada, D. Gravenor, M. Woelk, C. Frost et al., GARD: a genetic algorithm for recombination detection, Bioinformatics, vol.22, issue.24, pp.3096-3098, 2006.
DOI : 10.1093/bioinformatics/btl474

J. Maydt and T. Lengauer, Recco: recombination analysis using cost optimization, Bioinformatics, vol.22, issue.9, pp.1064-1071, 2006.
DOI : 10.1093/bioinformatics/btl057

G. Mcvean, P. Awadalla, and P. Fearnhead, A coalescent-based method for detecting and estimating recombination from gene sequences, Genetics, vol.160, pp.1231-1241, 2002.

Z. Yang, PAML 4: Phylogenetic Analysis by Maximum Likelihood, Molecular Biology and Evolution, vol.24, issue.8, pp.1586-1591, 2007.
DOI : 10.1093/molbev/msm088

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.322.1650

W. Swanson, R. Nielsen, and Q. Yang, Pervasive Adaptive Evolution in Mammalian Fertilization Proteins, Molecular Biology and Evolution, vol.20, issue.1, pp.18-20, 2003.
DOI : 10.1093/oxfordjournals.molbev.a004233

W. Wong, Z. Yang, N. Goldman, and R. Nielsen, Accuracy and Power of Statistical Methods for Detecting Adaptive Evolution in Protein Coding Sequences and for Identifying Positively Selected Sites, Genetics, vol.168, issue.2, pp.1041-1051, 2004.
DOI : 10.1534/genetics.104.031153

Z. Yang, W. Wong, and R. Nielsen, Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection, Molecular Biology and Evolution, vol.22, issue.4, pp.1107-1118, 2005.
DOI : 10.1093/molbev/msi097

D. Liberles, Evaluation of Methods for Determination of a Reconstructed History of Gene Sequence Evolution, Molecular Biology and Evolution, vol.18, issue.11, pp.2040-2047, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003745

J. Siltberg and D. Liberles, A simple covarion-based approach to analyse nucleotide substitution rates, Journal of Evolutionary Biology, vol.95, issue.4, pp.588-594, 2002.
DOI : 10.1046/j.1420-9101.2002.00416.x

D. Posada and K. Crandall, Evaluation of methods for detecting recombination from DNA sequences: Computer simulations, Proceedings of the National Academy of Sciences, vol.98, issue.24, pp.13757-13762, 2001.
DOI : 10.1073/pnas.241370698

B. Spratt, W. Hanage, and E. Feil, The relative contributions of recombination and point mutation to the diversification of bacterial clones, Current Opinion in Microbiology, vol.4, issue.5, pp.602-606, 2001.
DOI : 10.1016/S1369-5274(00)00257-5

K. Singh, X. Zhang, A. Patibandla, P. Chien, . Jr et al., Antigens of Mycobacterium tuberculosis Expressed during Preclinical Tuberculosis: Serological Immunodominance of Proteins with Repetitive Amino Acid Sequences, Infection and Immunity, vol.69, issue.6, pp.4185-4191, 2001.
DOI : 10.1128/IAI.69.6.4185-4191.2001

J. Becq, M. Gutierrez, V. Rosas-magallanes, J. Rauzier, and B. Gicquel, Contribution of Horizontally Acquired Genomic Islands to the Evolution of the Tubercle Bacilli, Molecular Biology and Evolution, vol.24, issue.8, pp.1861-1871, 2007.
DOI : 10.1093/molbev/msm111

J. Koeck, M. Fabre, F. Simon, M. Daffé, and E. Garnotel, Clinical characteristics of the smooth tubercle bacilli ???Mycobacterium canettii??? infection suggest the existence of an environmental reservoir, Clinical Microbiology and Infection, vol.17, issue.7, pp.1013-1019, 2011.
DOI : 10.1111/j.1469-0691.2010.03347.x

A. Namouchi, X. Didelot, U. Schöck, B. Gicquel, and E. Rocha, After the bottleneck: Genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection, Genome Research, vol.22, issue.4, pp.721-734, 2012.
DOI : 10.1101/gr.129544.111

URL : https://hal.archives-ouvertes.fr/pasteur-01374954

S. Lovett, Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences, Molecular Microbiology, vol.307, issue.5, pp.1243-1253, 2004.
DOI : 10.1111/j.1365-2958.2004.04076.x

E. Machowski, S. Barichievy, B. Springer, S. Durbach, and V. Mizrahi, In Vitro Analysis of Rates and Spectra of Mutations in a Polymorphic Region of the Rv0746 PE_PGRS Gene of Mycobacterium tuberculosis, Journal of Bacteriology, vol.189, issue.5, pp.2190-2195, 2007.
DOI : 10.1128/JB.01647-06

K. Koh, S. Soh, and G. Seah, Strong Antibody Responses to Mycobacterium tuberculosis PE-PGRS62 Protein Are Associated with Latent and Active Tuberculosis, Infection and Immunity, vol.77, issue.8, pp.3337-3343, 2009.
DOI : 10.1128/IAI.01175-08

Y. Huang, X. Zhou, Y. Bai, L. Yang, and X. Yin, Phagolysosome maturation of macrophages was reduced by PE_PGRS 62 protein expressing in Mycobacterium smegmatis and induced in IFN-?? priming, Veterinary Microbiology, vol.160, issue.1-2, pp.117-125, 2012.
DOI : 10.1016/j.vetmic.2012.05.011