Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis.
Abstract
Lebestatin, a new member of the lysine-threonine-serine (KTS)-disintegrin family, was purified to homogeneity from Tunisian snake (Macrovipera lebetina) venom. It is a single-chain polypeptide composed of 41 amino acids. The amino-acid sequence of lebestatin shows that it displays a pattern of cysteines similar to other short disintegrins, but contains the sequence KTS rather than RGD in its integrin-binding loop. Lebestatin presents a high homology with obtustatin and viperistatin. Lebestatin interacts specifically with the alpha1beta1 integrin. It was thus able to inhibit both adhesion and migration of PC12 and alpha1beta1 integrin-expressing CHO cells (CHO-alpha1) to type I and IV collagens. This disintegrin also affected adhesion and migration of endothelial cells and exhibited an anti-angiogenic effect in vivo when using the 8-day-old embryo chick chorioallantoic membrane model.