A. M. Dondorp, Malaria, New England Journal of Medicine, vol.361, issue.5, pp.455-467, 2009.
DOI : 10.1056/NEJMoa0808859

URL : https://hal.archives-ouvertes.fr/hal-01199794

T. Mita, Limited Geographical Origin and Global Spread of Sulfadoxine-Resistant dhps Alleles in Plasmodium falciparum Populations, Journal of Infectious Diseases, vol.204, issue.12, pp.1980-1988, 2011.
DOI : 10.1093/infdis/jir664

C. Roper, Intercontinental Spread of Pyrimethamine-Resistant Malaria, Science, vol.305, issue.5687, p.1124, 2004.
DOI : 10.1126/science.1098876

J. C. Wootton, Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum, Nature, vol.91, issue.6895, pp.320-323, 2002.
DOI : 10.1086/320707

C. Amaratunga, Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study, The Lancet Infectious Diseases, vol.12, issue.11, pp.851-858, 2012.
DOI : 10.1016/S1473-3099(12)70181-0

M. P. Kyaw, Reduced Susceptibility of Plasmodium falciparum to Artesunate in Southern Myanmar, PLoS ONE, vol.64, issue.3, p.57689, 2013.
DOI : 10.1371/journal.pone.0057689.s007

H. Noedl, Evidence of Artemisinin-Resistant Malaria in Western Cambodia, New England Journal of Medicine, vol.359, issue.24, pp.2619-2620, 2008.
DOI : 10.1056/NEJMc0805011

A. P. Phyo, Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study, The Lancet, vol.379, issue.9830, pp.1960-1966, 2012.
DOI : 10.1016/S0140-6736(12)60484-X

T. T. Hien, In vivo susceptibility of Plasmodium falciparum to artesunate in Binh Phuoc Province, Vietnam, Malaria Journal, vol.11, issue.1, p.355, 2012.
DOI : 10.1016/S0140-6736(12)60034-8

J. A. Flegg, Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator, Malaria Journal, vol.10, issue.1, p.339, 2011.
DOI : 10.1109/TAC.1974.1100705

N. J. White, The parasite clearance curve, Malaria Journal, vol.10, issue.1, p.278, 2011.
DOI : 10.1186/1471-2334-8-39

B. Witkowski, Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies, The Lancet Infectious Diseases, vol.13, issue.12, pp.1043-1049, 2013.
DOI : 10.1016/S1473-3099(13)70252-4

URL : https://hal.archives-ouvertes.fr/pasteur-00863935

I. H. Cheeseman, A Major Genome Region Underlying Artemisinin Resistance in Malaria, Science, vol.336, issue.6077, pp.79-82, 2012.
DOI : 10.1126/science.1215966

O. Miotto, Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia, Nature Genetics, vol.89, issue.6, pp.648-655, 2013.
DOI : 10.1101/gr.094052.109

S. Takala-harrison, Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia, Proc. Natl Acad. Sci. USA, pp.240-245, 2013.
DOI : 10.1073/pnas.1211205110

T. M. Lopera-mesa, Plasmodium falciparum Clearance Rates in Response to Artesunate in Malian Children With Malaria: Effect of Acquired Immunity, Journal of Infectious Diseases, vol.207, issue.11, pp.1655-1663, 2013.
DOI : 10.1093/infdis/jit082

B. Witkowski, Increased Tolerance to Artemisinin in Plasmodium falciparum Is Mediated by a Quiescence Mechanism, Antimicrobial Agents and Chemotherapy, vol.54, issue.5, pp.1872-1877, 2010.
DOI : 10.1128/AAC.01636-09

N. Klonis, Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion, Proc. Natl Acad. Sci. USA, pp.11405-11410, 2011.
DOI : 10.1073/pnas.1104063108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136263

I. Vigan-womas, An In Vivo and In Vitro Model of Plasmodium falciparum Rosetting and Autoagglutination Mediated by varO, a Group A var Gene Encoding a Frequent Serotype, Infection and Immunity, vol.76, issue.12, pp.5565-5580, 2008.
DOI : 10.1128/IAI.00901-08

B. Witkowski, Reduced Artemisinin Susceptibility of Plasmodium falciparum Ring Stages in Western Cambodia, Antimicrobial Agents and Chemotherapy, vol.57, issue.2, pp.914-923, 2013.
DOI : 10.1128/AAC.01868-12

B. Padmanabhan, Structural Basis for Defects of Keap1 Activity Provoked by Its Point Mutations in Lung Cancer, Molecular Cell, vol.21, issue.5, pp.689-700, 2006.
DOI : 10.1016/j.molcel.2006.01.013

L. M. Boyden, Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities, Nature, vol.25, issue.7383, pp.98-102, 2012.
DOI : 10.1038/nature10814

X. Li, D. Zhang, M. Hannink, and L. J. Beamer, Crystal Structure of the Kelch Domain of Human Keap1, Journal of Biological Chemistry, vol.279, issue.52, pp.54750-54758, 2004.
DOI : 10.1074/jbc.M410073200

K. Itoh, Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes & Development, vol.13, issue.1, pp.76-86, 1999.
DOI : 10.1101/gad.13.1.76

D. D. Zhang and M. Hannink, Distinct Cysteine Residues in Keap1 Are Required for Keap1-Dependent Ubiquitination of Nrf2 and for Stabilization of Nrf2 by Chemopreventive Agents and Oxidative Stress, Molecular and Cellular Biology, vol.23, issue.22, pp.8137-8152, 2003.
DOI : 10.1128/MCB.23.22.8137-8151.2003

Z. Bozdech and H. Ginsburg, Antioxidant defense in Plasmodium falciparum--data mining of the transcriptome, Malaria Journal, vol.3, issue.1, p.23, 2004.
DOI : 10.1186/1475-2875-3-23

N. K. Nesser, D. O. Peterson, and D. K. Hawley, RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo, Proc. Natl Acad. Sci. USA 103, pp.3268-3273, 2006.
DOI : 10.1073/pnas.0511330103

H. Kettenberger, K. J. Armache, and P. Cramer, Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage, Cell, vol.114, issue.3, pp.347-357, 2003.
DOI : 10.1016/S0092-8674(03)00598-1

D. Dorin-semblat, A. Sicard, C. Doerig, L. Ranford-cartwright, and C. Doerig, Disruption of the PfPK7 Gene Impairs Schizogony and Sporogony in the Human Malaria Parasite Plasmodium falciparum, Eukaryotic Cell, vol.7, issue.2, pp.279-285, 2008.
DOI : 10.1128/EC.00245-07

R. Tewari, The Systematic Functional Analysis of Plasmodium Protein Kinases Identifies Essential Regulators of Mosquito Transmission, Cell Host & Microbe, vol.8, issue.4, pp.377-387, 2010.
DOI : 10.1016/j.chom.2010.09.006

P. J. Rosenthal, J. H. Mckerrow, M. Aikawa, H. Nagasawa, and J. H. Leech, A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum., Journal of Clinical Investigation, vol.82, issue.5, pp.1560-1566, 1988.
DOI : 10.1172/JCI113766

P. S. Sijwali, Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites, Proc. Natl Acad. Sci. USA 101, pp.8721-8726, 2004.
DOI : 10.1073/pnas.0402738101

P. S. Sijwali, J. Koo, N. Singh, and P. J. Rosenthal, Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum, Molecular and Biochemical Parasitology, vol.150, issue.1, pp.96-106, 2006.
DOI : 10.1016/j.molbiopara.2006.06.013

N. Klonis, Altered temporal response of malaria parasites determines differential sensitivity to artemisinin, Proc. Natl Acad. Sci. USA, pp.5157-5162, 2013.
DOI : 10.1073/pnas.1217452110

C. A. Lobo, H. Fujioka, M. Aikawa, and N. Kumar, Disruption of the Pfg27 Locus by Homologous Recombination Leads to Loss of the Sexual Phenotype in P. falciparum, Molecular Cell, vol.3, issue.6, pp.793-798, 1999.
DOI : 10.1016/S1097-2765(01)80011-3

A. Olivieri, protein Pfg27 is dispensable for gametocyte and gamete production, but contributes to cell integrity during gametocytogenesis, Molecular Microbiology, vol.143, issue.2, pp.180-193, 2009.
DOI : 10.1111/j.1365-2958.2009.06762.x

A. Sharma, I. Sharma, D. Kogkasuriyachai, and N. Kumar, Structure of a gametocyte protein essential for sexual development in Plasmodium falciparum, Nature Structural Biology, vol.10, issue.3, pp.197-203, 2003.
DOI : 10.1038/nsb899

O. Meanchey, NAMRU-2 therapeutic efficacy study, artesunate-mefloquine) WHO therapeutic efficacy study, dihydroartemisinin-piperaquine), Kampong Som/Speu, vol.32, 1957.

. Kratie, WHO therapeutic efficacy study, dihydroartemisininpiperaquine ) Preah Vihear (n 5 19, 2011 WHO therapeutic efficacy study, dihydroartemisinin-piperaquine); Ratanakiri (n 5 32, 2010 WHO therapeutic efficacy study, dihydroartemisinin-piperaquine). Spearman's coefficient of rank correlation (8 sites): r 520, ARTICLE RESEARCH, vol.1599, pp.0-0001, 2011.