P. Adams, : a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.2, pp.213-221, 2010.
DOI : 10.1107/S0907444909052925

M. Aran, D. Ferrero, E. Pagano, and R. Wolosiuk, Typical 2-Cys peroxiredoxins - modulation by covalent transformations and noncovalent interactions, FEBS Journal, vol.275, issue.9, pp.2478-2493, 2009.
DOI : 10.1111/j.1742-4658.2009.06984.x

S. Barranco-medina, J. Lázaro, and K. Dietz, The oligomeric conformation of peroxiredoxins links redox state to function, FEBS Letters, vol.104, issue.12, pp.1809-1816, 2009.
DOI : 10.1016/j.febslet.2009.05.029

C. Cass, J. Johnson, L. Califf, T. Xu, H. Hernandez et al., Proteomic analysis of Schistosoma mansoni egg secretions, Molecular and Biochemical Parasitology, vol.155, issue.2, pp.84-93, 2007.
DOI : 10.1016/j.molbiopara.2007.06.002

C. Cremers, D. Reichmann, J. Hausmann, M. Ilbert, and J. U. , Unfolding of Metastable Linker Region Is at the Core of Hsp33 Activation as a Redox-regulated Chaperone, Journal of Biological Chemistry, vol.285, issue.15, pp.11243-11251, 2010.
DOI : 10.1074/jbc.M109.084350

URL : https://hal.archives-ouvertes.fr/hal-00677454

I. Davis, L. Murray, J. Richardson, and D. Richardson, MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes, Nucleic Acids Research, vol.32, issue.Web Server, pp.615-619, 2004.
DOI : 10.1093/nar/gkh398

C. Dekker, K. Willison, and W. Taylor, On the evolutionary origin of the chaperonins, Proteins: Structure, Function, and Bioinformatics, vol.17, issue.4, pp.1172-1192, 2011.
DOI : 10.1002/prot.22952

P. Emsley, B. Lohkamp, W. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr D Biol Crystallogr, vol.66, pp.2126-2132, 2010.

P. Evans, An introduction to data reduction: space-group determination, scaling and intensity statistics, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.4, pp.282-292, 2011.
DOI : 10.1107/S090744491003982X

L. Flohé, H. Budde, and B. Hofmann, Peroxiredoxins in antioxidant defense and redox regulation, BioFactors, vol.268, issue.1, pp.3-10, 2003.
DOI : 10.1002/biof.5520190102

L. Gourlay, D. Bhella, S. Kelly, N. Price, and J. Lindsay, Structure-Function Analysis of Recombinant Substrate Protein 22 kDa (SP-22): A MITOCHONDRIAL 2-CYS PEROXIREDOXIN ORGANIZED AS A DECAMERIC TOROID, Journal of Biological Chemistry, vol.278, issue.35, pp.32631-32637, 2003.
DOI : 10.1074/jbc.M303862200

W. Green and D. Colley, Modulation of Schistosoma mansoni egg-induced granuloma formation: I-J restriction of T cell-mediated suppression in a chronic parasitic infection., Proceedings of the National Academy of Sciences, vol.78, issue.2, pp.1152-1156, 1981.
DOI : 10.1073/pnas.78.2.1152

A. Hall, P. Karplus, and L. Poole, Typical 2-Cys peroxiredoxins - structures, mechanisms and functions, FEBS Journal, vol.283, issue.9, pp.2469-2477, 2009.
DOI : 10.1111/j.1742-4658.2009.06985.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747500

J. Harris, E. Schröder, M. Isupov, D. Scheffler, P. Kristensen et al., Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1547, issue.2, pp.221-255, 2001.
DOI : 10.1016/S0167-4838(01)00184-4

S. Hirotsu, Y. Abe, K. Okada, N. Nagahara, H. Hori et al., Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product, Proceedings of the National Academy of Sciences, vol.96, issue.22, pp.12333-12338, 1999.
DOI : 10.1073/pnas.96.22.12333

H. Jang, Two Enzymes in One, Cell, vol.117, issue.5, pp.625-635, 2004.
DOI : 10.1016/j.cell.2004.05.002

T. Jönsson, L. Johnson, and W. Lowther, Structure of the sulphiredoxin???peroxiredoxin complex reveals an essential repair embrace, Nature, vol.50, issue.7174, pp.98-101, 2008.
DOI : 10.1038/nature06415

T. Jönsson, L. Johnson, and W. Lowther, Protein Engineering of the Quaternary Sulfiredoxin{middle dot}Peroxiredoxin Enzyme{middle dot}Substrate Complex Reveals the Molecular Basis for Cysteine Sulfinic Acid Phosphorylation, Journal of Biological Chemistry, vol.284, issue.48, pp.33305-33310, 2009.
DOI : 10.1074/jbc.M109.036400

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1002/bip.360221211

C. Kumsta and J. U. , Redox-Regulated Chaperones, Biochemistry, vol.48, issue.22, pp.4666-4676, 2009.
DOI : 10.1021/bi9003556

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848813

J. Lim, H. Choi, Y. Park, H. Nam, H. Woo et al., Irreversible Oxidation of the Active-site Cysteine of Peroxiredoxin to Cysteine Sulfonic Acid for Enhanced Molecular Chaperone Activity, Journal of Biological Chemistry, vol.283, issue.43, pp.28873-80, 2008.
DOI : 10.1074/jbc.M804087200

W. Lowther and A. Haynes, Reduction of Cysteine Sulfinic Acid in Eukaryotic, Typical 2-Cys Peroxiredoxins by Sulfiredoxin, Antioxidants & Redox Signaling, vol.15, issue.1, pp.99-109, 2011.
DOI : 10.1089/ars.2010.3564

J. Moon, Oxidative Stress-dependent Structural and Functional Switching of a Human 2-Cys Peroxiredoxin Isotype II That Enhances HeLa Cell Resistance to H2O2-induced Cell Death, Journal of Biological Chemistry, vol.280, issue.31, pp.28775-28784, 2005.
DOI : 10.1074/jbc.M505362200

G. Murshudov, P. Skubák, A. Lebedev, N. Pannu, R. Steiner et al., 5 for the refinement of macromolecular crystal structures, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.4, pp.355-367, 2011.
DOI : 10.1107/S0907444911001314

K. Nelson, S. Knutson, L. Soito, C. Klomsiri, L. Poole et al., Analysis of the peroxiredoxin family: Using active-site structure and sequence information for global classification and residue analysis, Proteins: Structure, Function, and Bioinformatics, vol.45, issue.Suppl, pp.947-964, 2011.
DOI : 10.1002/prot.22936

C. Neumann, J. Cao, and Y. Manevich, Peroxiredoxin 1 and its role in cell signaling, Cell Cycle, vol.8, issue.24, pp.4072-4078, 2009.
DOI : 10.4161/cc.8.24.10242

Z. Otwinowski and Z. Minor, [20] Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, pp.307-326, 1997.
DOI : 10.1016/S0076-6879(97)76066-X

T. Phalen, K. Weirather, P. Deming, V. Anathy, A. Howe et al., Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery, The Journal of Cell Biology, vol.114, issue.5, pp.779-789, 2006.
DOI : 10.1158/0008-5472.CAN-04-0946

S. Poon, M. Rybchyn, S. Easterbrook-smith, J. Carver, G. Pankhurst et al., Mildly Acidic pH Activates the Extracellular Molecular Chaperone Clusterin, Journal of Biological Chemistry, vol.277, issue.42, pp.39532-39540, 2002.
DOI : 10.1074/jbc.M204855200

L. Potterton, S. Mcnicholas, E. Krissinel, J. Gruber, K. Cowtan et al., 4 molecular-graphics project, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2288-2294, 2004.
DOI : 10.1107/S0907444904023716

D. Sali, M. Bycroft, and A. Fersht, Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain, Nature, vol.335, pp.740-743, 1988.

A. Sayed and D. Williams, Biochemical Characterization of 2-Cys Peroxiredoxins from Schistosoma mansoni, Journal of Biological Chemistry, vol.279, issue.25, pp.26159-66, 2004.
DOI : 10.1074/jbc.M401748200

A. Sayed, S. Cook, and D. Williams, Redox Balance Mechanisms in Schistosoma mansoni Rely on Peroxiredoxins and Albumin and Implicate Peroxiredoxins as Novel Drug Targets, Journal of Biological Chemistry, vol.281, issue.25, pp.17001-17010, 2006.
DOI : 10.1074/jbc.M512601200

L. Soito, C. Williamson, S. Knutson, J. Fetrow, L. Poole et al., PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family, Nucleic Acids Research, vol.39, issue.Database, pp.332-337, 2011.
DOI : 10.1093/nar/gkq1060

M. Stadecker, The role of T-cell anergy in the immunomodulation of schistosomiasis, Parasitology Today, vol.8, issue.6, pp.199-204, 1992.
DOI : 10.1016/0169-4758(92)90264-3

N. Manuscript, N. Manuscript, N. Williams, D. Asahi, H. Botkin et al., Schistosome infection stimulates host CD4(+) T helper cell and B-cell responses against a novel egg antigen, thioredoxin peroxidase, Infect Immun, vol.69, pp.1134-1175, 2001.

M. Winn, 4 suite and current developments, Acta Crystallographica Section D Biological Crystallography, vol.65, issue.4, pp.235-242, 2011.
DOI : 10.1107/S0907444910045749

J. Winter, K. Linke, A. Jatzek, and J. U. , Severe Oxidative Stress Causes Inactivation of DnaK and Activation of the Redox-Regulated Chaperone Hsp33, Molecular Cell, vol.17, issue.3, pp.381-392, 2005.
DOI : 10.1016/j.molcel.2004.12.027

C. Winterbourn and M. Hampton, Thiol chemistry and specificity in redox signaling, Free Radical Biology and Medicine, vol.45, issue.5, pp.549-561, 2008.
DOI : 10.1016/j.freeradbiomed.2008.05.004

Z. Wood, E. Schröder, R. Harris, J. Poole, and L. , Structure, mechanism and regulation of peroxiredoxins, Trends in Biochemical Sciences, vol.28, issue.1, pp.32-40, 2003.
DOI : 10.1016/S0968-0004(02)00003-8

T. Yeates, [22] Detecting and overcoming crystal twinning, Methods Enzymol, vol.276, pp.344-358, 1997.
DOI : 10.1016/S0076-6879(97)76068-3