H. Maltezou, Drug Resistance in Visceral Leishmaniasis, Journal of Biomedicine and Biotechnology, vol.127, issue.6, p.617521, 2010.
DOI : 10.1016/j.exppara.2009.02.001

L. Flohé, The trypanothione system and the opportunities it offers to create drugs for the neglected kinetoplast diseases, Biotechnology Advances, vol.30, issue.1, pp.294-301, 2012.
DOI : 10.1016/j.biotechadv.2011.05.012

S. Wilkinson, D. Horn, S. Prathalingam, and J. Kelly, RNA Interference Identifies Two Hydroperoxide Metabolizing Enzymes That Are Essential to the Bloodstream Form of the African Trypanosome, Journal of Biological Chemistry, vol.278, issue.34, pp.31640-31646, 2003.
DOI : 10.1074/jbc.M303035200

S. Romao, H. Castro, C. Sousa, S. Carvalho, and A. Tomas, The cytosolic tryparedoxin of Leishmania infantum is essential for parasite survival, International Journal for Parasitology, vol.39, issue.6, pp.703-711, 2009.
DOI : 10.1016/j.ijpara.2008.11.009

M. Ariyanayagam, S. Oza, M. Guther, and A. Fairlamb, Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome, Biochemical Journal, vol.391, issue.2, pp.425-432, 2005.
DOI : 10.1042/BJ20050911

M. Comini, S. Guerrero, S. Haile, U. Menge, and H. Lünsdorf, Valdiation of Trypanosoma brucei trypanothione synthetase as drug target, Free Radical Biology and Medicine, vol.36, issue.10, pp.1289-1302, 2004.
DOI : 10.1016/j.freeradbiomed.2004.02.008

J. Tovar, M. Cunningham, A. Smith, S. Croft, and A. Fairlamb, Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: Effect on parasite intracellular survival, Proceedings of the National Academy of Sciences, vol.95, issue.9, pp.5311-5316, 1998.
DOI : 10.1073/pnas.95.9.5311

M. Cunningham and A. Fairlamb, Trypanothione Reductase from Leishmania donovani. Purification, Characterisation and Inhibition by Trivalent Antimonials, European Journal of Biochemistry, vol.27, issue.2, pp.460-446, 1995.
DOI : 10.1016/0166-6851(92)90243-D

G. Colotti and A. Ilari, Polyamine metabolism in Leishmania: from arginine to trypanothione, Amino Acids, vol.272, issue.Pt 2, pp.269-285, 2011.
DOI : 10.1007/s00726-010-0630-3

R. Bryk, P. Griffin, and C. Nathan, Peroxynitrite reductase activity of bacterial peroxiredoxins, Nature, vol.407, pp.211-215, 2000.

M. Trujillo, G. Ferrer-sueta, L. Thomson, L. Flohé, and R. Radi, Kinetics of Peroxiredoxins and their Role in the Decomposition of Peroxynitrite, Subcell Biochem, vol.44, pp.83-113, 2007.
DOI : 10.1007/978-1-4020-6051-9_5

D. Sela, N. Yaffe, and J. Shlomai, Enzymatic Mechanism Controls Redox-mediated Protein-DNA Interactions at the Replication Origin of Kinetoplast DNA Minicircles, Journal of Biological Chemistry, vol.283, issue.46, pp.32034-32044, 2008.
DOI : 10.1074/jbc.M804417200

J. Shlomai, Redox Control of Protein???DNA Interactions: From Molecular Mechanisms to Significance in Signal Transduction, Gene Expression, and DNA Replication, Antioxidants & Redox Signaling, vol.13, issue.9, pp.1429-76, 2010.
DOI : 10.1089/ars.2009.3029

M. Dormeyer, N. Reckenfelderbäumer, H. Lüdemann, and R. Krauth-siegel, Trypanothione-dependent Synthesis of Deoxyribonucleotides by Trypanosoma brucei Ribonucleotide Reductase, Journal of Biological Chemistry, vol.276, issue.14, pp.10602-10602, 2001.
DOI : 10.1074/jbc.M010352200

H. Castro, S. Romao, S. Carvalho, F. Teixeira, and C. Sousa, Mitochondrial Redox Metabolism in Trypanosomatids Is Independent of Tryparedoxin Activity, PLoS ONE, vol.97, issue.9, p.12607, 2010.
DOI : 10.1371/journal.pone.0012607.s004

R. Coler and S. Reed, Second-generation vaccines against leishmaniasis, Trends in Parasitology, vol.21, issue.5, pp.244-249, 2005.
DOI : 10.1016/j.pt.2005.03.006

S. Bertholet, Y. Goto, L. Carter, A. Bhatia, and R. Howard, Optimized subunit vaccine protects against experimental leishmaniasis, Vaccine, vol.27, issue.50, pp.7036-7081, 2009.
DOI : 10.1016/j.vaccine.2009.09.066

K. Nelson, S. Knutson, L. Soito, C. Klomsiri, and L. Poole, Analysis of the peroxiredoxin family: Using active-site structure and sequence information for global classification and residue analysis, Proteins: Structure, Function, and Bioinformatics, vol.45, issue.Suppl, pp.947-964, 2011.
DOI : 10.1002/prot.22936

Z. Wood, L. Poole, and P. Karplus, Peroxiredoxin Evolution and the Regulation of Hydrogen Peroxide Signaling, Science, vol.300, issue.5619, pp.650-653, 2003.
DOI : 10.1126/science.1080405

M. Alphey, G. Leonard, D. Gourley, E. Tetaud, and A. Fairlamb, The High Resolution Crystal Structure of Recombinant Crithidia fasciculata Tryparedoxin-I, Journal of Biological Chemistry, vol.274, issue.36, pp.25613-25622, 1999.
DOI : 10.1074/jbc.274.36.25613

M. Pi?eyro, J. Pizarro, F. Lema, O. Pritsch, and A. Cayota, Crystal structure of the tryparedoxin peroxidase from the human parasite, Journal of Structural Biology, vol.150, issue.1, pp.11-22, 2005.
DOI : 10.1016/j.jsb.2004.12.005

M. Alphey, C. Bond, E. Tetaud, A. Fairlamb, and W. Hunter, The Structure of Reduced Tryparedoxin Peroxidase Reveals a Decamer and Insight into Reactivity of 2Cys-peroxiredoxins, Journal of Molecular Biology, vol.300, issue.4, pp.903-916, 2000.
DOI : 10.1006/jmbi.2000.3881

H. Budde, L. Flohé, B. Hofmann, and M. Nimtz, Verification of the Interaction of a Tryparedoxin Peroxidase with Tryparedoxin by ESI-MS/MS, Biological Chemistry, vol.384, issue.9, pp.1305-1309, 2003.
DOI : 10.1515/BC.2003.146

Z. Cao, T. Tavender, A. Roszak, R. Cogdell, and N. Bulleid, Crystal Structure of Reduced and of Oxidized Peroxiredoxin IV Enzyme Reveals a Stable Oxidized Decamer and a Non-disulfide-bonded Intermediate in the Catalytic Cycle, Journal of Biological Chemistry, vol.286, issue.49, pp.42257-42266, 2011.
DOI : 10.1074/jbc.M111.298810

Z. Otwinowski and W. Minor, [20] Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, pp.307-326, 1997.
DOI : 10.1016/S0076-6879(97)76066-X

A. Vagin and A. Teplyakov, : an Automated Program for Molecular Replacement, Journal of Applied Crystallography, vol.30, issue.6, pp.1022-1025, 1997.
DOI : 10.1107/S0021889897006766

G. N. Murshudov, A. Vagin, and E. Dodson, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-255, 1997.
DOI : 10.1107/S0907444996012255

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

B. Hofmann, H. Budde, K. Bruns, S. Guerrero, and H. Kalisz, Structures of Tryparedoxins Revealing Interaction with Trypanothione, Biological Chemistry, vol.382, issue.3, pp.459-471, 2001.
DOI : 10.1515/BC.2001.056

J. Painter and E. Merritt, web server for the generation of multi-group TLS models, Journal of Applied Crystallography, vol.39, issue.1, pp.109-111, 2006.
DOI : 10.1107/S0021889805038987

M. Winn, G. Murshudov, and M. Papiz, Macromolecular TLS Refinement in REFMAC at Moderate Resolutions, Methods Enzymol, vol.374, pp.300-321, 2003.
DOI : 10.1016/S0076-6879(03)74014-2

R. Laskowski, M. Macarthur, D. Moss, and J. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, issue.2, pp.283-291, 1993.
DOI : 10.1107/S0021889892009944

W. Delano, The PyMOL Molecular Graphics System, 2002.

I. Chaiken, S. Rose, and R. Karlsson, Analysis of macromolecular interactions using immobilized ligands, Analytical Biochemistry, vol.201, issue.2, pp.197-210, 1992.
DOI : 10.1016/0003-2697(92)90329-6

E. Krissinel and K. Henrick, Inference of Macromolecular Assemblies from Crystalline State, Journal of Molecular Biology, vol.372, issue.3, pp.774-797, 2007.
DOI : 10.1016/j.jmb.2007.05.022

J. Sun, D. Wu, T. Xu, X. Wang, and X. Xu, SEPPA: a computational server for spatial epitope prediction of protein antigens, Nucleic Acids Research, vol.37, issue.Web Server, pp.612-616, 2009.
DOI : 10.1093/nar/gkp417

R. Ogusucu, D. Rettori, D. Munhoz, L. Netto, and A. O. , Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: Rate constants by competitive kinetics, Free Radical Biology and Medicine, vol.42, issue.3, pp.326-334, 2007.
DOI : 10.1016/j.freeradbiomed.2006.10.042

M. Trujillo, G. Ferrer-sueta, L. Thomson, L. Flohé, and R. Radi, Kinetics of Peroxiredoxins and their Role in the Decomposition of Peroxynitrite, Peroxiredoxin Systems, pp.83-113, 2007.
DOI : 10.1007/978-1-4020-6051-9_5

M. Alphey, M. Gabrielsen, E. Micossi, G. Leonard, and S. Mcsweeney, Tryparedoxins from Crithidia fasciculata and Trypanosoma brucei: PHOTOREDUCTION OF THE REDOX DISULFIDE USING SYNCHROTRON RADIATION AND EVIDENCE FOR A CONFORMATIONAL SWITCH IMPLICATED IN FUNCTION, Journal of Biological Chemistry, vol.278, issue.28, pp.25919-25944, 2003.
DOI : 10.1074/jbc.M301526200

P. Karplus and A. Hall, Structural Survey of the Peroxiredoxins, Subcell Biochem Review, vol.44, pp.41-60, 2007.
DOI : 10.1007/978-1-4020-6051-9_3

X. Wang, L. Wang, X. Wang, F. Sun, and C. Wang, Structural insights into the peroxidase activity and inactivation of human peroxiredoxin 4, Biochemical Journal, vol.276, issue.1, pp.113-121, 2012.
DOI : 10.1021/bi012173m

F. Saccoccia, G. Boumis, M. Brunori, D. Micco, P. Koutris et al., Moonlighting by Different Stressors: Crystal Structure of the Chaperone Species of a 2-Cys Peroxiredoxin, Structure, vol.20, issue.3, pp.429-439, 2012.
DOI : 10.1016/j.str.2012.01.004

URL : https://hal.archives-ouvertes.fr/pasteur-00952065

F. Malatesta, The study of bimolecular reactions under non-pseudo-first order conditions, Biophysical Chemistry, vol.116, issue.3, pp.251-256, 2005.
DOI : 10.1016/j.bpc.2005.04.006

D. Davies, P. Jones, and D. Mantle, The kinetics of formation of horseradish peroxidase compound I by reaction with peroxobenzoic acids. pH and peroxo acid substituent effects, Biochemical Journal, vol.157, issue.1, pp.247-253, 1976.
DOI : 10.1042/bj1570247

M. Comini, U. Menge, and L. Flohé, Biosynthesis of Trypanothione in Trypanosoma brucei brucei, Biological Chemistry, vol.384, issue.4, pp.653-659, 2003.
DOI : 10.1515/BC.2003.072

W. Lowther and A. Haynes, Reduction of Cysteine Sulfinic Acid in Eukaryotic, Typical 2-Cys Peroxiredoxins by Sulfiredoxin, Antioxidants & Redox Signaling, vol.15, issue.1, pp.99-109, 2011.
DOI : 10.1089/ars.2010.3564

C. Boileau, L. Eme, C. Brochier-armanet, A. Janicki, and C. Zhang, A eukaryotic-like sulfiredoxin involved in oxidative stress responses and in the reduction of the sulfinic form of 2-Cys peroxiredoxin in the cyanobacterium Anabaena PCC 7120, New Phytologist, vol.33, issue.4, pp.1108-1126, 2011.
DOI : 10.1111/j.1469-8137.2011.03774.x

A. Ilari, P. Baiocco, L. Messori, A. Fiorillo, and A. Boffi, A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition, Amino Acids, vol.281, issue.3, pp.803-811, 2012.
DOI : 10.1007/s00726-011-0997-9

P. Baiocco, A. Ilari, P. Ceci, S. Orsini, and M. Gramiccia, Proliferation, ACS Medicinal Chemistry Letters, vol.2, issue.3, pp.230-233, 2011.
DOI : 10.1021/ml1002629