Y. Aoki and G. Tosato, Pathogenesis and manifestations of human herpesvirus-8-associated disorders, Seminars in Hematology, vol.40, issue.2, pp.143-153, 2003.
DOI : 10.1016/S0037-1963(03)70006-7

R. Nador, E. Cesarman, A. Chadburn, D. Dawson, and J. Sald, Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus, Blood, vol.88, pp.645-656, 1996.

H. Matta and P. Chaudhary, The proteasome inhibitor bortezomib (PS-341) inhibits growth and induces apoptosis in primary effusion lymphoma cells, Cancer Biology & Therapy, vol.4, issue.1, pp.77-82, 2005.
DOI : 10.4161/cbt.4.1.1379

A. Chari, A. Mazumder, and S. Jagannath, Proteasome inhibition and its therapeutic potential in multiple myeloma, Biologics: Targets & Therapy, vol.4, pp.273-287, 2010.
DOI : 10.2147/BTT.S3419

Y. Aoki, G. Feldman, and G. Tosato, Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma, Blood, vol.101, issue.4, pp.1535-1542, 2003.
DOI : 10.1182/blood-2002-07-2130

A. Garg, D. Nowis, J. Golab, P. Vandenabeele, and D. Krysko, Immunogenic cell death, DAMPs and anticancer therapeutics: An emerging amalgamation, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1805, issue.1, pp.53-71, 2010.
DOI : 10.1016/j.bbcan.2009.08.003

O. Kepp, A. Tesniere, F. Schlemmer, M. Michaud, and L. Senovilla, Immunogenic cell death modalities and their impact on cancer treatment, Apoptosis, vol.166, issue.Suppl. 2, pp.364-375, 2009.
DOI : 10.1007/s10495-008-0303-9

N. Haynes, R. Van-der-most, R. Lake, and M. Smyth, Immunogenic anti-cancer chemotherapy as an emerging concept, Current Opinion in Immunology, vol.20, issue.5, pp.545-557, 2008.
DOI : 10.1016/j.coi.2008.05.008

A. Tesniere, T. Panaretakis, O. Kepp, L. Apetoh, and F. Ghiringhelli, Molecular characteristics of immunogenic cancer cell death, Cell Death and Differentiation, vol.96, issue.1, pp.3-12, 2008.
DOI : 10.1016/S0092-8674(00)81683-9

L. Apetoh, A. Tesniere, F. Ghiringhelli, G. Kroemer, and L. Zitvogel, Molecular Interactions between Dying Tumor Cells and the Innate Immune System Determine the Efficacy of Conventional Anticancer Therapies, Cancer Research, vol.68, issue.11, pp.4026-4030, 2008.
DOI : 10.1158/0008-5472.CAN-08-0427

L. Zitvogel, O. Kepp, L. Senovilla, L. Menger, and N. Chaput, Immunogenic Tumor Cell Death for Optimal Anticancer Therapy: The Calreticulin Exposure Pathway, Clinical Cancer Research, vol.16, issue.12, pp.3100-3104, 2010.
DOI : 10.1158/1078-0432.CCR-09-2891

R. Spisek and M. Dhodapkar, Towards a Better Way to Die with Chemotherapy: Role of Heat Shock Protein Exposure on Dying Tumor Cells, Cell Cycle, vol.6, issue.16, pp.1962-1965, 2007.
DOI : 10.4161/cc.6.16.4601

I. Martins, O. Kepp, F. Schlemmer, S. Adjemian, and M. Tailler, Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress, Oncogene, vol.335, issue.10, pp.1147-1158, 2011.
DOI : 10.1016/j.cell.2010.02.015

R. Spisek, A. Charalambous, A. Mazumder, D. Vesole, and S. Jagannath, Bortezomib enhances dendritic cell (DC) mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications, Blood, vol.109, issue.11, pp.4839-4845, 2007.
DOI : 10.1182/blood-2006-10-054221

R. Zappasodi, S. Pupa, G. Ghedini, I. Bongarzone, and M. Magni, Improved Clinical Outcome in Indolent B-Cell Lymphoma Patients Vaccinated with Autologous Tumor Cells Experiencing Immunogenic Death, Cancer Research, vol.70, issue.22, pp.9062-9072, 2010.
DOI : 10.1158/0008-5472.CAN-10-1825

N. Casares, M. Pequignot, A. Tesniere, F. Ghiringhelli, and S. Roux, Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death, The Journal of Experimental Medicine, vol.157, issue.12, 2005.
DOI : 10.1073/pnas.93.18.9730

T. Petersen, N. Dickgreber, and I. Hermans, Tumor Antigen Presentation by Dendritic Cells, Critical Reviews??? in Immunology, vol.30, issue.4, pp.345-386, 2010.
DOI : 10.1615/CritRevImmunol.v30.i4.30

Y. Ma, L. Aymeric, C. Locher, G. Kroemer, and L. Zitvogel, The dendritic cell???tumor cross-talk in cancer, Current Opinion in Immunology, vol.23, issue.1, pp.146-152, 2011.
DOI : 10.1016/j.coi.2010.09.008

J. Facciponte, I. Macdonald, X. Wang, H. Kim, and M. Manjili, Heat Shock Proteins and Scavenger Receptors: Role in Adaptive Immune Responses, Immunological Investigations, vol.169, issue.5, pp.325-342, 2005.
DOI : 10.1074/jbc.M200425200

S. Basu, R. Binder, T. Ramalingam, and P. Srivastava, CD91 Is a Common Receptor for Heat Shock Proteins gp96, hsp90, hsp70, and Calreticulin, Immunity, vol.14, issue.3, pp.303-313, 2001.
DOI : 10.1016/S1074-7613(01)00111-X

J. Stebbing, B. Gazzard, S. Portsmouth, F. Gotch, and L. Kim, Disease-associated dendritic cells respond to disease-specific antigens through the common heat shock protein receptor, Blood, vol.102, issue.5, pp.1806-1814, 2003.
DOI : 10.1182/blood-2003-03-0891

S. Demaria, F. Santori, B. Ng, L. Liebes, and S. Formenti, Select forms of tumor cell apoptosis induce dendritic cell maturation, Journal of Leukocyte Biology, vol.77, issue.3, pp.361-368, 2005.
DOI : 10.1189/jlb.0804478

A. Tesniere, L. Apetoh, F. Ghiringhelli, N. Joza, and T. Panaretakis, Immunogenic cancer cell death: a key-lock paradigm, Current Opinion in Immunology, vol.20, issue.5, pp.504-511, 2008.
DOI : 10.1016/j.coi.2008.05.007

M. Obeid, A. Tesniere, F. Ghiringhelli, G. Fimia, and L. Apetoh, Calreticulin exposure dictates the immunogenicity of cancer cell death, Nature Medicine, vol.279, issue.1, pp.54-61, 2007.
DOI : 10.1038/nm1523

URL : https://hal.archives-ouvertes.fr/inserm-00451702

N. Chaput, D. Botton, S. Obeid, M. Apetoh, L. Ghiringhelli et al., Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference, Journal of Molecular Medicine, vol.54, issue.Pt 2, pp.1069-1076, 2007.
DOI : 10.1007/s00109-007-0214-1

T. Becker, F. Hartl, and F. Wieland, CD40, an extracellular receptor for binding and uptake of Hsp70???peptide complexes, The Journal of Cell Biology, vol.39, issue.7, pp.1277-1285, 2002.
DOI : 10.1016/S1074-7613(01)00242-4

S. Gardai, D. Bratton, C. Ogden, and P. Henson, Recognition ligands on apoptotic cells: a perspective, Journal of Leukocyte Biology, vol.79, issue.5, pp.896-903, 2006.
DOI : 10.1189/jlb.1005550

R. Binder and P. Srivastava, Essential role of CD91 in re-presentation of gp96-chaperoned peptides, Proceedings of the National Academy of Sciences, vol.101, issue.16, pp.6128-6133, 2004.
DOI : 10.1073/pnas.0308180101

J. Stebbing, B. Gazzard, L. Kim, S. Portsmouth, and A. Wildfire, The heat-shock protein receptor CD91 is up-regulated in monocytes of HIV-1-infected "true" long-term nonprogressors, Blood, vol.101, issue.10, pp.4000-4004, 2003.
DOI : 10.1182/blood-2002-11-3353

A. Kebba, J. Stebbing, R. S. Ingram, R. Agaba, and J. , Expression of the common heat-shock protein receptor CD91 is increased on monocytes of exposed yet HIV-1-seronegative subjects, Journal of Leukocyte Biology, vol.78, issue.1, pp.37-42, 2005.
DOI : 10.1189/jlb.0105049

A. Nencioni, A. Garuti, K. Schwarzenberg, G. Cirmena, D. Bello et al., Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells, European Journal of Immunology, vol.37, issue.3, pp.681-689, 2006.
DOI : 10.1002/eji.200535298

M. Cirone, D. Renzo, L. Trivedi, P. Lucania, G. Borgia et al., Dendritic Cell Differentiation Blocked by Primary Effusion Lymphoma-Released Factors is Partially Restored by Inhibition of P38 MAPK, International Journal of Immunopathology and Pharmacology, vol.217, issue.4, pp.1079-1086, 2010.
DOI : 10.1016/j.immuni.2008.08.004

M. Cirone, G. Lucania, S. Aleandri, G. Borgia, and P. Trivedi, Suppression of dendritic cell differentiation through cytokines released by Primary Effusion Lymphoma cells, Immunology Letters, vol.120, issue.1-2, pp.37-41, 2008.
DOI : 10.1016/j.imlet.2008.06.011

U. Bharadwaj, M. Li, R. Zhang, C. Chen, and Q. Yao, Elevated Interleukin-6 and G-CSF in Human Pancreatic Cancer Cell Conditioned Medium Suppress Dendritic Cell Differentiation and Activation, Cancer Research, vol.67, issue.11, pp.5479-5488, 2007.
DOI : 10.1158/0008-5472.CAN-06-3963

C. Li, Y. Zang, M. Sen, R. Leeman-neill, and D. Man, Bortezomib up-regulates activated signal transducer and activator of transcription-3 and synergizes with inhibitors of signal transducer and activator of transcription-3 to promote head and neck squamous cell carcinoma cell death, Molecular Cancer Therapeutics, vol.8, issue.8, pp.2211-2220, 2009.
DOI : 10.1158/1535-7163.MCT-09-0327