V. B. Borisov, Cytochrome bd: structure and properties, Biochemistry (Moscow), vol.61, pp.565-574, 1996.

S. Jünemann, Cytochrome bd terminal oxidase1All amino acid numbering refers to the E. coli enzyme.1, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1321, issue.2, pp.107-127, 1997.
DOI : 10.1016/S0005-2728(97)00046-7

V. B. Borisov, R. B. Gennis, J. Hemp, and M. I. Verkhovsky, The cytochrome bd respiratory oxygen reductases, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1807, issue.11, 2011.
DOI : 10.1016/j.bbabio.2011.06.016

H. Yaoi and H. Tamiya, On the respiratory pigment, cytochrome, in bacteria, Proc. Imp. Acad. Jap, pp.436-439, 1928.

R. K. Poole and G. M. Cook, Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation, Adv. Microb. Physiol, vol.43, pp.165-224, 2000.
DOI : 10.1016/S0065-2911(00)43005-5

N. S. Juty, F. Moshiri, M. Merrick, C. Anthony, and S. Hill, The Klebsiella pneumoniae cytochrome bd' terminal oxidase complex and its role in microaerobic nitrogen fixation, Microbiology, vol.143, issue.8, pp.2673-2683, 1997.
DOI : 10.1099/00221287-143-8-2673

L. Zhang-barber, A. K. Turner, G. Martin, G. Frankel, G. Dougan et al., Influence of genes encoding proton-translocating enzymes on suppression of Salmonella typhimurium growth and colonization., Journal of Bacteriology, vol.179, issue.22, pp.7186-7190, 1997.
DOI : 10.1128/jb.179.22.7186-7190.1997

S. S. Way, S. Sallustio, R. S. Magliozzo, and M. B. Goldberg, Impact of either elevated or decreased levels of cytochrome bd expression on Shigella flexneri virulence, J. Bacteriol, vol.181, pp.1229-1237, 1999.

S. Endley, D. Mcmurray, and T. A. Ficht, Interruption of the cydB Locus in Brucella abortus Attenuates Intracellular Survival and Virulence in the Mouse Model of Infection, Journal of Bacteriology, vol.183, issue.8, pp.2454-2462, 2001.
DOI : 10.1128/JB.183.8.2454-2462.2001

A. K. Turner, L. Z. Barber, P. Wigley, S. Muhammad, M. A. Jones et al., Contribution of Proton-Translocating Proteins to the Virulence of Salmonella enterica Serovars Typhimurium, Gallinarum, and Dublin in Chickens and Mice, Infection and Immunity, vol.71, issue.6, pp.3392-3401, 2003.
DOI : 10.1128/IAI.71.6.3392-3401.2003

A. D. Baughn and M. H. Malamy, The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen, Nature, vol.427, issue.6973, pp.441-444, 2004.
DOI : 10.1038/nature02285

L. Shi, C. D. Sohaskey, B. D. Kana, S. Dawes, R. J. North et al., Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration, Proc. Natl Acad. Sci. USA, pp.15629-15634, 2005.
DOI : 10.1073/pnas.0507850102

Y. Yamamoto, C. Poyart, P. Trieu-cuot, G. Lamberet, A. Gruss et al., Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence, Molecular Microbiology, vol.41, issue.2, pp.525-534, 2005.
DOI : 10.1111/j.1365-2958.2005.04555.x

S. Loisel-meyer, M. P. Jimenez-de-bagues, S. Kohler, J. P. Liautard, and V. Jubier-maurin, Differential Use of the Two High-Oxygen-Affinity Terminal Oxidases of Brucella suis for In Vitro and Intramacrophagic Multiplication, Infection and Immunity, vol.73, issue.11, pp.7768-7771, 2005.
DOI : 10.1128/IAI.73.11.7768-7771.2005

M. H. Larsen, B. H. Kallipolitis, J. K. Christiansen, J. E. Olsen, and H. Ingmer, The response regulator ResD modulates virulence gene expression in response to carbohydrates in Listeria monocytogenes, Molecular Microbiology, vol.180, issue.6, pp.1622-1635, 2006.
DOI : 10.1046/j.1365-2958.2000.02076.x

M. Brunori, A. Giuffrè, and P. Sarti, Cytochrome oxidase, ligands and electrons, Journal of Inorganic Biochemistry, vol.99, issue.1, pp.324-336, 2005.
DOI : 10.1016/j.jinorgbio.2004.10.011

M. M. Pereira, F. L. Sousa, A. F. Verissimo, and M. Teixeira, Looking for the minimum common denominator in haem???copper oxygen reductases: Towards a unified catalytic mechanism, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1777, issue.7-8, pp.929-934, 2008.
DOI : 10.1016/j.bbabio.2008.05.441

P. Brzezinski and R. B. Gennis, Cytochrome c oxidase: exciting progress and remaining mysteries, Journal of Bioenergetics and Biomembranes, vol.1557, issue.10, pp.521-531, 2008.
DOI : 10.1007/s10863-008-9181-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012550

O. M. Richter and B. Ludwig, Electron transfer and energy transduction in the terminal part of the respiratory chain ??? Lessons from bacterial model systems, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1787, issue.6, pp.626-634, 2009.
DOI : 10.1016/j.bbabio.2009.02.020

A. Puustinen, M. Finel, T. Haltia, R. B. Gennis, and M. Wikström, Properties of the two terminal oxidases of Escherichia coli, Biochemistry, vol.30, issue.16, pp.3936-3942, 1991.
DOI : 10.1021/bi00230a019

C. E. Cooper, Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector?, Trends in Biochemical Sciences, vol.27, issue.1, pp.33-39, 2002.
DOI : 10.1016/S0968-0004(01)02035-7

P. Sarti, A. Giuffrè, M. C. Barone, E. Forte, D. Mastronicola et al., Nitric oxide and cytochrome oxidase: reaction mechanisms from the enzyme to the cell, Free Radical Biology and Medicine, vol.34, issue.5, pp.509-520, 2003.
DOI : 10.1016/S0891-5849(02)01326-6

M. Brunori, E. Forte, M. Arese, D. Mastronicola, A. Giuffrè et al., Nitric oxide and the respiratory enzyme, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.9-10, pp.1144-1154, 2006.
DOI : 10.1016/j.bbabio.2006.05.011

C. E. Cooper and C. Giulivi, Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology, AJP: Cell Physiology, vol.292, issue.6, pp.1993-2003, 2007.
DOI : 10.1152/ajpcell.00310.2006

J. D. Erusalimsky and S. Moncada, Nitric Oxide and Mitochondrial Signaling: From Physiology to Pathophysiology, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.12, pp.2524-2531, 2007.
DOI : 10.1161/ATVBAHA.107.151167

C. T. Taylor and S. Moncada, Nitric Oxide, Cytochrome C Oxidase, and the Cellular Response to Hypoxia, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.4, pp.643-647, 2010.
DOI : 10.1161/ATVBAHA.108.181628

C. E. Cooper, J. Torres, M. A. Sharpe, and M. T. Wilson, Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide?, FEBS Lett, vol.414, pp.281-284, 1997.

A. Giuffrè, G. Stubauer, M. Brunori, P. Sarti, J. Torres et al., Chloride Bound to Oxidized Cytochrome c Oxidase Controls the Reaction with Nitric Oxide, Journal of Biological Chemistry, vol.273, issue.49, pp.32475-32478, 1998.
DOI : 10.1074/jbc.273.49.32475

J. Torres, C. E. Cooper, and M. T. Wilson, A Common Mechanism for the Interaction of Nitric Oxide with the Oxidized Binuclear Centre and Oxygen Intermediates of Cytochromec Oxidase, Journal of Biological Chemistry, vol.273, issue.15, pp.8756-8766, 1998.
DOI : 10.1074/jbc.273.15.8756

P. Sarti, A. Giuffrè, E. Forte, D. Mastronicola, M. C. Barone et al., Nitric Oxide and Cytochrome c Oxidase: Mechanisms of Inhibition and NO Degradation, Biochemical and Biophysical Research Communications, vol.274, issue.1, pp.183-187, 2000.
DOI : 10.1006/bbrc.2000.3117

J. Torres, M. A. Sharpe, A. Rosquist, C. E. Cooper, and M. T. Wilson, oxidase rapidly metabolises nitric oxide to nitrite, FEBS Letters, vol.315, issue.3, pp.263-266, 2000.
DOI : 10.1016/S0014-5793(00)01682-3

A. M. Gardner, R. A. Helmick, and P. R. Gardner, Flavorubredoxin, an Inducible Catalyst for Nitric Oxide Reduction and Detoxification in Escherichia coli, Journal of Biological Chemistry, vol.277, issue.10, pp.8172-8177, 2002.
DOI : 10.1074/jbc.M110471200

C. M. Gomes, A. Giuffrè, E. Forte, J. B. Vicente, L. M. Saraiva et al., A Novel Type of Nitric-oxide Reductase. ESCHERICHIA COLI FLAVORUBREDOXIN, Journal of Biological Chemistry, vol.277, issue.28, pp.25273-25276, 2002.
DOI : 10.1074/jbc.M203886200

P. R. Gardner, A. M. Gardner, L. A. Martin, and A. L. Salzman, Nitric oxide dioxygenase: an enzymic function for flavohemoglobin, Proc. Natl. Acad. Sci. USA 95, pp.10378-10383, 1998.

A. Hausladen, A. Gow, and J. S. Stamler, Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen, Proc. Natl. Acad. Sci. USA 98, pp.10108-10112, 2001.
DOI : 10.1073/pnas.181199698

A. Bonamore and A. Boffi, Flavohemoglobin: Structure and reactivity, IUBMB Life, vol.1411, issue.1, pp.19-28, 2008.
DOI : 10.1002/iub.9

D. Mastronicola, F. Testa, E. Forte, E. Bordi, L. P. Pucillo et al., Flavohemoglobin and nitric oxide detoxification in the human protozoan parasite Giardia intestinalis, Biochemical and Biophysical Research Communications, vol.399, issue.4, pp.654-658, 2010.
DOI : 10.1016/j.bbrc.2010.07.137

V. B. Borisov, M. I. Verkhovsky, A. Böck, R. C. Kaper, J. B. Karp et al., Oxygen as acceptor in: EcoSal ? Escherichia coli and Salmonella: cellular and molecular biology, 2009.

I. Belevich, V. B. Borisov, J. Zhang, K. Yang, A. A. Konstantinov et al., Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the diheme active site, Proc. Natl. Acad. Sci. USA, pp.3657-3662, 2005.

J. J. Hill, J. O. Alben, and R. B. Gennis, Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli., Proc. Natl. Acad. Sci. USA 90, pp.5863-5867, 1993.
DOI : 10.1073/pnas.90.12.5863

M. Tsubaki, H. Hori, T. Mogi, and Y. Anraku, Cyanide-binding Site of bd-type Ubiquinol Oxidase from Escherichia coli, Journal of Biological Chemistry, vol.270, issue.48, pp.28565-28569, 1995.
DOI : 10.1074/jbc.270.48.28565

V. B. Borisov, R. B. Gennis, and A. A. Konstantinov, Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), vol.60, issue.60, pp.231-239, 1995.

M. H. Vos, V. B. Borisov, U. Liebl, J. Martin, and A. A. Konstantinov, Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site?, Proc. Natl. Acad. Sci. USA 97, pp.1554-1559, 2000.
DOI : 10.1073/pnas.030528197

URL : https://hal.archives-ouvertes.fr/hal-00837031

V. B. Borisov, S. E. Sedelnikova, R. K. Poole, and A. A. Konstantinov, Interaction of Cytochrome bd with Carbon Monoxide at Low and Room Temperatures: EVIDENCE THAT ONLY A SMALL FRACTION OF HEMEb 595 REACTS WITH CO, Journal of Biological Chemistry, vol.276, issue.25, pp.22095-22099, 2001.
DOI : 10.1074/jbc.M011542200

F. Rappaport, J. Zhang, M. H. Vos, R. B. Gennis, and V. B. Borisov, Heme???heme and heme???ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1797, issue.9, pp.1657-1664, 2010.
DOI : 10.1016/j.bbabio.2010.05.010

URL : https://hal.archives-ouvertes.fr/hal-00805070

J. Zhang, B. Barquera, and R. B. Gennis, reactive site near the periplasmic surface, FEBS Letters, vol.265, issue.1-3, pp.58-62, 2004.
DOI : 10.1016/S0014-5793(04)00125-5

B. C. Hill, J. J. Hill, and R. B. Gennis, The room temperature reaction of carbon monoxide and oxygen with the cytochrome bd quinol oxidase from Escherichia coli, Biochemistry, vol.33, issue.50, pp.15110-15115, 1994.
DOI : 10.1021/bi00254a021

I. Belevich, V. B. Borisov, and M. I. Verkhovsky, Discovery of the True Peroxy Intermediate in the Catalytic Cycle of Terminal Oxidases by Real-time Measurement, Journal of Biological Chemistry, vol.282, issue.39, pp.28514-28519, 2007.
DOI : 10.1074/jbc.M705562200

G. T. Babcock, How oxygen is activated and reduced in respiration, Proc. Natl. Acad. Sci. USA 96, pp.12971-12973, 1999.
DOI : 10.1073/pnas.96.23.12971

V. B. Borisov, I. A. Smirnova, I. A. Krasnosel-'skaya, and A. A. Konstantinov, Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow) translated from Biokhimiya (in Russian), vol.59, issue.59, pp.437-443, 1994.

I. Belevich, V. B. Borisov, A. A. Konstantinov, and M. I. Verkhovsky, : Stability and photolability, FEBS Letters, vol.43, issue.21, pp.4567-4570, 2005.
DOI : 10.1016/j.febslet.2005.07.011

V. B. Borisov, E. Forte, P. Sarti, M. Brunori, A. A. Konstantinov et al., Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochemical and Biophysical Research Communications, vol.355, issue.1, pp.97-102, 2007.
DOI : 10.1016/j.bbrc.2007.01.118

V. B. Borisov, E. Forte, P. Sarti, and A. Giuffrè, Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: Ferryl and oxy-ferrous species dominate, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1807, issue.5, pp.503-509, 2011.
DOI : 10.1016/j.bbabio.2011.02.007

URL : https://hal.archives-ouvertes.fr/pasteur-00975925

K. Yang, V. B. Borisov, A. A. Konstantinov, and R. B. Gennis, does not participate in the catalytic cycle: Direct evidence from rapid kinetics studies, FEBS Letters, vol.46, issue.25-26, pp.3705-3709, 2008.
DOI : 10.1016/j.febslet.2008.09.038

M. G. Mason, P. Nicholls, and C. E. Cooper, oxidase: redox interactions between metal centres, Biochemical Journal, vol.110, issue.2, pp.237-246, 2009.
DOI : 10.1021/bi00042a011

URL : https://hal.archives-ouvertes.fr/hal-00479128

V. B. Borisov, Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: Heme d binds CO with high affinity, Biochemistry (Moscow), vol.73, issue.1, pp.14-22, 2008.
DOI : 10.1134/S0006297908010021

S. Jünemann and J. M. Wrigglesworth, Cytochrome bd Oxidase from Azotobacter vinelandii: PURIFICATION AND QUANTITATION OF LIGAND BINDING TO THE OXYGEN REDUCTION SITE, Journal of Biological Chemistry, vol.270, issue.27, pp.16213-16220, 1995.
DOI : 10.1074/jbc.270.27.16213

H. Hori, M. Tsubaki, T. Mogi, and Y. Anraku, EPR study of NO complex of bd-type ubiquinol oxidase from Escherichia coli, J. Biol. Chem, vol.271, pp.9254-9258, 1996.

A. Giuffrè, G. Stubauer, P. Sarti, M. Brunori, W. G. Zumft et al., The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: Evolutionary implications, Proc. Natl. Acad. Sci. USA 96, pp.14718-14723, 1999.
DOI : 10.1073/pnas.96.26.14718

E. Forte, A. Urbani, M. Saraste, P. Sarti, M. Brunori et al., displays nitric oxide reductase activity, European Journal of Biochemistry, vol.262, issue.24, pp.6486-6491, 2001.
DOI : 10.1046/j.0014-2956.2001.02597.x

C. Butler, E. Forte, M. Scandurra, F. Arese, M. Giuffrè et al., Cytochrome bo3 from Escherichia coli: the binding and turnover of nitric oxide, Biochemical and Biophysical Research Communications, vol.296, issue.5, pp.1272-1278, 2002.
DOI : 10.1016/S0006-291X(02)02074-0

G. Stubauer, A. Giuffrè, M. Brunori, and P. Sarti, Cytochrome c Oxidase Does Not Catalyze the Anaerobic Reduction of NO, Biochemical and Biophysical Research Communications, vol.245, issue.2, pp.459-465, 1998.
DOI : 10.1006/bbrc.1998.8457

J. Van-der-oost, A. P. Deboer, J. L. Degier, W. G. Zumft, A. H. Stouthamer et al., The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase, FEMS Microbiology Letters, vol.121, issue.1, pp.1-10, 1994.
DOI : 10.1111/j.1574-6968.1994.tb07067.x

M. Saraste and J. Castresana, Cytochrome oxidase evolved by tinkering with denitrification enzymes, FEBS Letters, vol.209, issue.1, pp.1-4, 1994.
DOI : 10.1016/0014-5793(94)80228-9

V. B. Borisov, E. Forte, A. A. Konstantinov, R. K. Poole, P. Sarti et al., with nitric oxide, FEBS Letters, vol.124, issue.1-2, pp.201-204, 2004.
DOI : 10.1016/j.febslet.2004.09.013

T. M. Stevanin, N. Ioannidis, C. E. Mills, S. O. Kim, M. N. Hughes et al., Flavohemoglobin Hmp Affords Inducible Protection for Escherichia coli Respiration, Catalyzed by Cytochromesbo' or bd, from Nitric Oxide, Journal of Biological Chemistry, vol.275, issue.46, pp.35868-35875, 2000.
DOI : 10.1074/jbc.M002471200

G. C. Brown and C. E. Cooper, Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase, FEBS Letters, vol.250, issue.2-3, pp.295-298, 1994.
DOI : 10.1016/0014-5793(94)01290-3

M. G. Mason, P. Nicholls, M. T. Wilson, and C. E. Cooper, Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase, Proc. Natl. Acad. Sci. USA 103, pp.708-713, 2006.
DOI : 10.1073/pnas.0506562103

M. G. Mason, M. Shepherd, P. Nicholls, P. S. Dobbin, K. S. Dodsworth et al., Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nature Chemical Biology, vol.103, issue.2, pp.94-96, 2009.
DOI : 10.1038/nchembio.135

V. Borisov, R. Gennis, and A. A. Konstantinov, Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int, vol.37, pp.975-982, 1995.

V. B. Borisov, E. Forte, P. Sarti, M. Brunori, A. A. Konstantinov et al., terminal oxidase, FEBS Letters, vol.273, issue.20, pp.4823-4826, 2006.
DOI : 10.1016/j.febslet.2006.07.072

URL : https://hal.archives-ouvertes.fr/pasteur-00975925

S. Herold and F. K. Rehmann, Kinetic and mechanistic studies of the reactions of nitrogen monoxide and nitrite with ferryl myoglobin, JBIC Journal of Biological Inorganic Chemistry, vol.6, issue.5-6, pp.543-555, 2001.
DOI : 10.1007/s007750100231

S. Herold and F. K. Rehmann, Kinetic of the reactions of nitrogen monoxide and nitrite with ferryl hemoglobin. Free Radic, Biol. Med, vol.34, pp.531-545, 2003.

V. B. Borisov, E. Forte, A. Giuffrè, A. Konstantinov, and P. Sarti, Reaction of nitric oxide with the oxidized di-heme and heme???copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products, Journal of Inorganic Biochemistry, vol.103, issue.8, pp.1185-1187, 2009.
DOI : 10.1016/j.jinorgbio.2009.06.002

Q. Gibson and C. Greenwood, Reactions of cytochrome oxidase with oxygen and carbon monoxide, Biochemical Journal, vol.86, issue.3, pp.541-555, 1963.
DOI : 10.1042/bj0860541

D. D. Lemon, M. W. Calhoun, R. B. Gennis, and W. H. Woodruff, The gateway to the active site of heme-copper oxidases, Biochemistry, vol.32, issue.45, pp.11953-11956, 1993.
DOI : 10.1021/bi00096a002

S. P. Cary, J. A. Winger, M. A. Marletta, and G. , Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP, Proc. Natl. Acad. Sci. USA, pp.13064-13069, 2005.
DOI : 10.1073/pnas.0506289102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201615

S. Rinaldo, nitrite reductases, Biochemical Journal, vol.183, issue.1, pp.217-225, 2011.
DOI : 10.1074/jbc.M005033200

URL : https://hal.archives-ouvertes.fr/pasteur-00952182

E. Forte, V. B. Borisov, A. A. Konstantinov, M. Brunori, A. Giuffrè et al., Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem, vol.56, pp.265-269, 2007.

M. Bekker, S. De-vries, T. Beek, A. Hellingwerf, K. J. De-mattos et al., Respiration of Escherichia coli Can Be Fully Uncoupled via the Nonelectrogenic Terminal Cytochrome bd-II Oxidase, Journal of Bacteriology, vol.191, issue.17, pp.5510-5517, 2009.
DOI : 10.1128/JB.00562-09

S. A. Jones, Respiration of Escherichia coli in the Mouse Intestine, Infection and Immunity, vol.75, issue.10, pp.4891-4899, 2007.
DOI : 10.1128/IAI.00484-07

B. K. Hassani, A. S. Steunou, S. Liotenberg, F. Reiss-husson, C. Astier et al., Adaptation to Oxygen: ROLE OF TERMINAL OXIDASES IN PHOTOSYNTHESIS INITIATION IN THE PURPLE PHOTOSYNTHETIC BACTERIUM, RUBRIVIVAX GELATINOSUS, Journal of Biological Chemistry, vol.285, issue.26, 2010.
DOI : 10.1074/jbc.M109.086066

M. Bader, W. Muse, D. P. Ballou, C. Gassner, and J. C. Bardwell, Oxidative Protein Folding Is Driven by the Electron Transport System, Cell, vol.98, issue.2, pp.217-227, 1999.
DOI : 10.1016/S0092-8674(00)81016-8

K. Mobius, Heme biosynthesis is coupled to electron transport chains for energy generation, Proc. Natl. Acad. Sci. USA, pp.10436-10441, 2010.
DOI : 10.1073/pnas.1000956107

A. R. Richardson, P. M. Dunman, and F. C. Fang, The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity, Molecular Microbiology, vol.181, issue.4, pp.927-939, 2006.
DOI : 10.1128/JB.183.4.1113-1123.2001

C. M. Moore, M. M. Nakano, T. Wang, R. W. Ye, and J. D. Helmann, Response of Bacillus subtilis to Nitric Oxide and the Nitrosating Agent Sodium Nitroprusside, Journal of Bacteriology, vol.186, issue.14, pp.4655-4664, 2004.
DOI : 10.1128/JB.186.14.4655-4664.2004

P. Machado, R. Felix, R. Rodrigues, S. Oliveira, and C. Rodrigues-pousada, Characterization and Expression Analysis of the Cytochrome bd Oxidase Operon from Desulfovibrio gigas, Current Microbiology, vol.40, issue.4, pp.274-281, 2006.
DOI : 10.1007/s00284-005-0165-0

S. T. Pullan, M. D. Gidley, R. A. Jones, J. Barrett, T. M. Stevanin et al., Nitric Oxide in Chemostat-Cultured Escherichia coli Is Sensed by Fnr and Other Global Regulators: Unaltered Methionine Biosynthesis Indicates Lack of S Nitrosation, Journal of Bacteriology, vol.189, issue.5, pp.1845-1855, 2007.
DOI : 10.1128/JB.01354-06

J. A. Bailey, C. A. James, and W. H. Woodruff, Flow-Flash Kinetics of O2Binding to Cytochrome c Oxidase at Elevated [O2]: Observations Using High-Pressure Stopped-Flow for Gaseous Reactants, Biochemical and Biophysical Research Communications, vol.220, issue.3, pp.1055-1060, 1996.
DOI : 10.1006/bbrc.1996.0531

R. S. Blackmore, C. Greenwood, and Q. H. Gibson, Studies of the primary oxygen intermediate in the reaction of fully reduced cytochrome oxidase, J. Biol. Chem, vol.266, pp.19245-19249, 1991.

S. Jünemann, P. J. Butterworth, and J. M. Wrigglesworth, A suggested mechanism for the catalytic cycle of cytochrome bd terminal oxidase based on kinetic analysis, Biochemistry, vol.34, issue.45, pp.14861-14867, 1995.
DOI : 10.1021/bi00045a029