P. Caiafa and M. Zampieri, DNA methylation and chromatin structure: The puzzling CpG islands, Journal of Cellular Biochemistry, vol.16, issue.2, pp.257-265, 2005.
DOI : 10.1002/jcb.20325

V. K. Tiwari and S. B. Baylin, Breaching the Boundaries that Safeguard against Repression, Molecular Cell, vol.34, issue.4, pp.395-397, 2009.
DOI : 10.1016/j.molcel.2009.05.007

M. Zampieri, C. Passananti, R. Calabrese, M. Perilli, N. Corbi et al., Parp1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary, PLoS One Mol. Cell, vol.4, issue.34, pp.271-284, 2009.

L. Nocchi, M. Tomasetti, M. Amati, J. Neuzil, L. Santarelli et al., Thrombomodulin Is Silenced in Malignant Mesothelioma by a Poly(ADP-ribose) Polymerase-1-mediated Epigenetic Mechanism, Journal of Biological Chemistry, vol.286, issue.22, 2011.
DOI : 10.1074/jbc.M110.217331

A. Reale, G. D. Matteis, G. Galleazzi, M. Zampieri, and P. Caiafa, Modulation of DNMT1 activity by ADP-ribose polymers, Oncogene, vol.24, issue.1, pp.13-19, 2005.
DOI : 10.1038/sj.onc.1208005

T. Guastafierro, B. Cecchinelli, M. Zampieri, A. Reale, G. Riggio et al., CCCTC-binding Factor Activates PARP-1 Affecting DNA Methylation Machinery, Journal of Biological Chemistry, vol.283, issue.32, pp.21873-21880, 2008.
DOI : 10.1074/jbc.M801170200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494936

A. C. Bell and G. Felsenfeld, Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene, Nature, vol.405, pp.482-485, 2000.

I. A. De-la-rosa-velazquez, H. Rincon-arano, L. Benitez-bribiesca, and F. Recillas-targa, Epigenetic Regulation of the Human Retinoblastoma Tumor Suppressor Gene Promoter by CTCF, Cancer Research, vol.67, issue.6, pp.2577-2585, 2007.
DOI : 10.1158/0008-5472.CAN-06-2024

A. M. Fedoriw, P. Stein, P. Svoboda, R. M. Schultz, and M. S. Bartolomei, Transgenic RNAi Reveals Essential Function for CTCF in H19 Gene Imprinting, Science, vol.303, issue.5655, pp.238-240, 2004.
DOI : 10.1126/science.1090934

W. M. Gombert and A. Krumm, Targeted Deletion of Multiple CTCF-Binding Elements in the Human C-MYC Gene Reveals a Requirement for CTCF in C-MYC Expression, PLoS ONE, vol.4, issue.7, p.6109, 2009.
DOI : 10.1371/journal.pone.0006109.g005

S. Kurukuti, V. K. Tiwari, G. Tavoosidana, E. Pugacheva, A. Murrell et al., CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2, Proc. Natl. Acad. Sci. U.S.A. 103, pp.10684-10689, 2006.
DOI : 10.1073/pnas.0600326103

A. Lewis and A. Murrell, Genomic Imprinting: CTCF Protects the Boundaries, Current Biology, vol.14, issue.7, pp.284-286, 2004.
DOI : 10.1016/j.cub.2004.03.026

V. Pant, S. Kurukuti, E. Pugacheva, S. Shamsuddin, P. Mariano et al., Mutation of a Single CTCF Target Site within the H19 Imprinting Control Region Leads to Loss of Igf2 Imprinting and Complex Patterns of De Novo Methylation upon Maternal Inheritance, Molecular and Cellular Biology, vol.24, issue.8, pp.3497-3504, 2004.
DOI : 10.1128/MCB.24.8.3497-3504.2004

V. Pant, P. Mariano, C. Kanduri, A. Mattsson, V. Lobanenkov et al., The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains, Genes & Development, vol.17, issue.5, pp.586-590, 2003.
DOI : 10.1101/gad.254903

E. Rand, I. Ben-porath, I. Keshet, and H. Cedar, CTCF Elements Direct Allele-Specific Undermethylation at the Imprinted H19 Locus, Current Biology, vol.14, issue.11, pp.1007-1012, 2004.
DOI : 10.1016/j.cub.2004.05.041

C. J. Schoenherr, J. M. Levorse, and S. M. Tilghman, CTCF maintains differential methylation at the Igf2/H19 locus, Nature Genetics, vol.17, issue.1, pp.66-69, 2003.
DOI : 10.1093/nar/24.24.5064

W. Yu, V. Ginjala, V. Pant, I. Chernukhin, J. Whitehead et al., Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation, Nature Genetics, vol.13, issue.10, pp.1105-1110, 2004.
DOI : 10.1128/MCB.22.10.3339-3344.2002

S. Lopes, A. Lewis, P. Hajkova, W. Dean, J. Oswald et al., Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions, Human Molecular Genetics, vol.12, issue.3, pp.295-305, 2003.
DOI : 10.1093/hmg/ddg022

D. Farrar, S. Rai, I. Chernukhin, M. Jagodic, Y. Ito et al., Mutational Analysis of the Poly(ADP-Ribosyl)ation Sites of the Transcription Factor CTCF Provides an Insight into the Mechanism of Its Regulation by Poly(ADP-Ribosyl)ation, Molecular and Cellular Biology, vol.30, issue.5, pp.1199-1216, 2010.
DOI : 10.1128/MCB.00827-09

T. M. Yusufzai, H. Tagami, Y. Nakatani, and G. Felsenfeld, CTCF Tethers an Insulator to Subnuclear Sites, Suggesting Shared Insulator Mechanisms across Species, Molecular Cell, vol.13, issue.2, pp.291-298, 2004.
DOI : 10.1016/S1097-2765(04)00029-2

J. Zlatanova and P. Caiafa, CTCF and its protein partners: divide and rule?, Journal of Cell Science, vol.122, issue.9, pp.1275-1284, 2009.
DOI : 10.1242/jcs.039990

F. Docquier, G. X. Kita, D. Farrar, P. Jat, M. O-'hare et al., Decreased Poly(ADP-Ribosyl)ation of CTCF, a Transcription Factor, Is Associated with Breast Cancer Phenotype and Cell Proliferation, Clinical Cancer Research, vol.15, issue.18, pp.5762-5771, 2009.
DOI : 10.1158/1078-0432.CCR-09-0329

P. L. Panzeter, C. A. Realini, and F. R. Althaus, Noncovalent interactions of poly(adenosine diphosphate ribose) with histones, Biochemistry, vol.31, issue.5, pp.1379-1385, 1992.
DOI : 10.1021/bi00120a014

D. Capoa, A. Febbo, F. R. Giovannelli, F. Niveleau, A. Zardo et al., Reduced levels of poly(ADP-ribosyl)ation result in chromatin compaction and hypermethylation as shown by cell-by-cell computer-assisted quantitative analysis, FASEB J, vol.13, pp.89-93, 1999.

G. Zardo and P. Caiafa, The Unmethylated State of CpG Islands in Mouse Fibroblasts Depends on the Poly(ADP-ribosyl)ation Process, Journal of Biological Chemistry, vol.273, issue.26, pp.16517-16520, 1998.
DOI : 10.1074/jbc.273.26.16517

G. Zardo, S. Marenzi, M. Perilli, and P. Caiafa, Inhibition of poly(ADP-ribosyl)ation introduces an anomalous methylation pattern in transfected foreign DNA, FASEB J, vol.13, pp.1518-1522, 1999.

R. Ohlsson, V. Lobanenkov, and E. Klenova, Does CTCF mediate between nuclear organization and gene expression?, BioEssays, vol.28, issue.1, pp.37-50, 2010.
DOI : 10.1002/bies.200900118

M. Gaszner and G. Felsenfeld, Insulators: exploiting transcriptional and epigenetic mechanisms, Nature Reviews Genetics, vol.9, issue.9, pp.703-713, 2006.
DOI : 10.1038/nrg1925

A. Lewis and W. Reik, How imprinting centres work, Cytogenetic and Genome Research, vol.113, issue.1-4, pp.81-89, 2006.
DOI : 10.1159/000090818

P. Navarro and P. Avner, An embryonic story: Analysis of the gene regulative network controlling Xist expression in mouse embryonic stem cells, BioEssays, vol.105, issue.7, pp.581-588, 2010.
DOI : 10.1002/bies.201000019

J. E. Phillips and V. G. Corces, CTCF: Master Weaver of the Genome, Cell, vol.137, issue.7, pp.1194-1211, 2009.
DOI : 10.1016/j.cell.2009.06.001

J. A. Wallace and G. Felsenfeld, We gather together: insulators and genome organization, Current Opinion in Genetics & Development, vol.17, issue.5, pp.400-407, 2007.
DOI : 10.1016/j.gde.2007.08.005

X. Chen, H. Xu, P. Yuan, F. Fang, M. Huss et al., Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells, Cell, vol.133, issue.6, pp.1106-1117, 2008.
DOI : 10.1016/j.cell.2008.04.043

T. H. Kim, Z. K. Abdullaev, A. D. Smith, K. A. Ching, D. I. Loukinov et al., Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome, Cell, vol.128, issue.6, pp.1231-1245, 2007.
DOI : 10.1016/j.cell.2006.12.048

X. Xie, T. S. Mikkelsen, A. Gnirke, K. Lindblad-toh, M. Kellis et al., Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites, Proceedings of the National Academy of Sciences, vol.104, issue.17, pp.7145-7150, 2007.
DOI : 10.1073/pnas.0701811104

J. Zlatanova and P. Caiafa, CCCTC-binding factor: to loop or to bridge, Cellular and Molecular Life Sciences, vol.66, issue.10, pp.1647-1660, 2009.
DOI : 10.1007/s00018-009-8647-z

O. Weth, C. Weth, M. Bartkuhn, J. Leers, F. Uhle et al., Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites, PLoS ONE, vol.5, issue.4, 2010.
DOI : 10.1371/journal.pone.0010119.s005

C. H. Su, Y. J. Shann, and M. T. Hsu, p53 Chromatin Epigenetic Domain Organization and p53 Transcription, Molecular and Cellular Biology, vol.29, issue.1, pp.93-103, 2009.
DOI : 10.1128/MCB.00704-08

L. Coppito, . Aquila, M. Italy, . Biology, C. Pathology et al., Materials and Methods ChIP and RE-ChIP The following primers were used for the amplification in ChIP and RE-ChIP assays: DMR1a, sense 5