M. Dobaczewski, C. Gonzalez-quesada, and N. Frangogiannis, The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction, Journal of Molecular and Cellular Cardiology, vol.48, issue.3, pp.504-511, 2010.
DOI : 10.1016/j.yjmcc.2009.07.015

M. Pfeffer and E. Braunwald, Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications, Circulation, vol.81, issue.4, pp.1161-1172, 1990.
DOI : 10.1161/01.CIR.81.4.1161

R. Gaetani, . Barile, . Forte, . Chimenti, . Ionta et al., New Perspectives to Repair a Broken Heart, Cardiovascular & Hematological Agents in Medicinal Chemistry, vol.7, issue.2, pp.91-107, 2009.
DOI : 10.2174/187152509787847128

E. Forte, . Chimenti, . Barile, . Gaetani, . Angelini et al., Cardiac Cell Therapy: The Next (Re)Generation, Stem Cell Reviews and Reports, vol.16, issue.Suppl 1, pp.1018-1030, 2011.
DOI : 10.1007/s12015-011-9252-8

URL : https://hal.archives-ouvertes.fr/pasteur-00978435

E. Messina, . De-angelis, . Frati, . Morrone, . Chimenti et al., Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart, Circulation Research, vol.95, issue.9, pp.911-921, 2004.
DOI : 10.1161/01.RES.0000147315.71699.51

R. Smith, . Barile, . Cho, . Leppo, . Hare et al., Regenerative Potential of Cardiosphere-Derived Cells Expanded From Percutaneous Endomyocardial Biopsy Specimens, Circulation, vol.115, issue.7, pp.896-908, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.655209

D. Davis, E. Smith, . Marban, . Et, and . Al, Human Cardiospheres are a Source of Stem Cells with Cardiomyogenic Potential, STEM CELLS, vol.28, pp.903-904, 2010.
DOI : 10.1002/stem.413

R. Makkar, . Smith, K. Cheng, L. Malliaras, . Thomson et al., Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial, The Lancet, vol.379, issue.9819, pp.895-904, 2012.
DOI : 10.1016/S0140-6736(12)60195-0

T. Li, K. Cheng, . Malliaras, . Smith, . Zhang et al., Direct Comparison of Different Stem Cell Types and Subpopulations Reveals Superior Paracrine Potency and Myocardial Repair Efficacy With Cardiosphere-Derived Cells, Journal of the American College of Cardiology, vol.59, issue.10, pp.942-953, 2012.
DOI : 10.1016/j.jacc.2011.11.029

T. Li, . Cheng, . St-lee, . Matsushita, . Davis et al., Cardiospheres Recapitulate a Niche-Like Microenvironment Rich in Stemness and Cell-Matrix Interactions, Rationalizing Their Enhanced Functional Potency for Myocardial Repair, STEM CELLS, vol.27, issue.11, pp.2088-2098, 2010.
DOI : 10.1002/stem.532

S. Lee, . Aj-white, . Matsushita, C. Malliaras, Y. Steenbergen et al., Intramyocardial Injection of Autologous Cardiospheres or Cardiosphere-Derived Cells Preserves Function and Minimizes Adverse Ventricular Remodeling in Pigs With Heart Failure Post-Myocardial Infarction, Journal of the American College of Cardiology, vol.57, issue.4, pp.455-465, 2011.
DOI : 10.1016/j.jacc.2010.07.049

D. Shen, K. Cheng, and E. Marban, Dose-dependent functional benefit of human cardiosphere transplantation in mice with acute myocardial infarction, Journal of Cellular and Molecular Medicine, vol.4, issue.9, 2012.
DOI : 10.1111/j.1582-4934.2011.01512.x

I. Chimenti, . Smith, . Li, . Gerstenblith, A. Messina et al., Relative Roles of Direct Regeneration Versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted Into Infarcted Mice, Circulation Research, vol.106, issue.5, pp.971-980, 2010.
DOI : 10.1161/CIRCRESAHA.109.210682

K. Boudoulas and A. Hatzopoulos, Cardiac repair and regeneration: the Rubik's cube of cell therapy for heart disease, Disease Models & Mechanisms, vol.2, issue.7-8, pp.344-358, 2009.
DOI : 10.1242/dmm.000240

J. Zavadil and E. Bottinger, TGF-?? and epithelial-to-mesenchymal transitions, Oncogene, vol.285, issue.37, pp.5764-5774, 2005.
DOI : 10.1038/ncb1173

J. Thiery and J. Sleeman, Complex networks orchestrate epithelial???mesenchymal transitions, Nature Reviews Molecular Cell Biology, vol.117, issue.2, pp.131-142, 2006.
DOI : 10.1038/nrm1835

N. Laping, . Grygielko, . Mathur, . Butter, C. Bomberger et al., Inhibition of Transforming Growth Factor (TGF)-beta 1-Induced Extracellular Matrix with a Novel Inhibitor of the TGF-beta Type I Receptor Kinase Activity: SB-431542, Molecular Pharmacology, vol.62, issue.1, pp.58-64, 2002.
DOI : 10.1124/mol.62.1.58

R. Kalluri and R. Weinberg, The basics of epithelial-mesenchymal transition, Journal of Clinical Investigation, vol.119, issue.6, pp.1420-1428, 2009.
DOI : 10.1172/JCI39104

K. Chua, . Kl-poon, . Lim, R. Sim, J. Huang et al., Target cell movement in tumor and cardiovascular diseases based on the epithelial???mesenchymal transition concept, Advanced Drug Delivery Reviews, vol.63, issue.8, pp.558-567, 2011.
DOI : 10.1016/j.addr.2011.02.003

S. Mani, . Guo, . Liao, . En-eaton, . Ayyanan et al., The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells, Cell, vol.133, issue.4, pp.704-715, 2008.
DOI : 10.1016/j.cell.2008.03.027

L. Caja, . Bertran, N. Campbell, I. Fausto, and . Fabregat, The transforming growth factor-beta (TGF-??) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells, Journal of Cellular Physiology, vol.282, issue.5, pp.1214-1223, 2011.
DOI : 10.1002/jcp.22439

I. Chimenti, . Gaetani, . Barile, . Forte, . Ionta et al., Isolation and Expansion of Adult Cardiac Stem/Progenitor Cells in the Form of Cardiospheres from Human Cardiac Biopsies and Murine Hearts, Methods Mol Biol, vol.879, pp.327-338, 2012.
DOI : 10.1007/978-1-61779-815-3_19

K. Takahashi, . Tanabe, . Ohnuki, . Narita, K. Ichisaka et al., Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, issue.5, pp.861-872, 2007.
DOI : 10.1016/j.cell.2007.11.019

J. Yu, M. Vodyanik, K. Smuga-otto, J. Antosiewicz-bourget, J. Frane et al., Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells, Science, vol.318, issue.5858, pp.1917-1920, 2007.
DOI : 10.1126/science.1151526

M. Ieda, P. Fu, V. Delgado-olguin, Y. Vedantham, . Hayashi et al., Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors, Cell, vol.142, issue.3, pp.375-386, 2010.
DOI : 10.1016/j.cell.2010.07.002

L. Qian, Y. Huang, C. Spencer, . Foley, . Vedantham et al., In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes, Nature, vol.100, issue.7400, pp.593-598, 2012.
DOI : 10.1038/nature11044

M. Gustafsson, . Zheng, . Pereira, . Gradin, . Jin et al., Hypoxia Requires Notch Signaling to Maintain the Undifferentiated Cell State, Developmental Cell, vol.9, issue.5, pp.617-628, 2005.
DOI : 10.1016/j.devcel.2005.09.010

N. Jordan, G. Johnson, and A. Abell, Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer, Cell Cycle, vol.143, issue.17, pp.2865-2873, 2011.
DOI : 10.1021/cb100305h

M. Kluppel and J. Wrana, Turning it up a Notch: cross-talk between TGF?? and Notch signaling, BioEssays, vol.276, issue.2, pp.115-118, 2005.
DOI : 10.1002/bies.20187

M. Nemir and T. Pedrazzini, Functional role of Notch signaling in the developing and postnatal heart, Journal of Molecular and Cellular Cardiology, vol.45, issue.4, pp.495-504, 2008.
DOI : 10.1016/j.yjmcc.2008.02.273

P. Sansone, C. Storci, . Giovannini, . Pandolfi, . Pianetti et al., p66Shc/Notch-3 Interplay Controls Self-Renewal and Hypoxia Survival in Human Stem/Progenitor Cells of the Mammary Gland Expanded In Vitro as Mammospheres, STEM CELLS, vol.11, issue.3, pp.807-815, 2007.
DOI : 10.1634/stemcells.2006-0442

R. Li, . Liang, . Ni, . Zhou, . Qing et al., A Mesenchymal-to-Epithelial Transition Initiates and Is Required for the Nuclear Reprogramming of Mouse Fibroblasts, Cell Stem Cell, vol.7, issue.1, pp.51-63, 2010.
DOI : 10.1016/j.stem.2010.04.014

R. Zhang, . Han, . Zheng, Y. Li, J. Shu et al., Kr??ppel-like factor 4 interacts with p300 to activate mitofusin 2 gene expression induced by all-trans retinoic acid in VSMCs, Acta Pharmacologica Sinica, vol.31, issue.10, pp.1293-1302, 2010.
DOI : 10.1128/MCB.01320-08

M. Zeisberg, A. Shah, and R. Kalluri, Bone Morphogenic Protein-7 Induces Mesenchymal to Epithelial Transition in Adult Renal Fibroblasts and Facilitates Regeneration of Injured Kidney, Journal of Biological Chemistry, vol.280, issue.9, pp.8094-8100, 2005.
DOI : 10.1074/jbc.M413102200

Y. Asazuma-nakamura, Y. Dai, Y. Harada, K. Jiang, T. Hamaoka et al., Cx43 contributes to TGF-?? signaling to regulate differentiation of cardiac fibroblasts into myofibroblasts, Experimental Cell Research, vol.315, issue.7, pp.1190-1199, 2009.
DOI : 10.1016/j.yexcr.2008.12.021

Y. Saga, S. Kitajima, and S. Miyagawa-tomita, Mesp1 Expression Is the Earliest Sign of Cardiovascular Development, Trends in Cardiovascular Medicine, vol.10, issue.8, pp.345-352, 2000.
DOI : 10.1016/S1050-1738(01)00069-X

E. Willems, . Lanier, . Forte, J. Lo, M. Cashman et al., A Chemical Biology Approach to Myocardial Regeneration, Journal of Cardiovascular Translational Research, vol.326, issue.45, pp.340-350, 2011.
DOI : 10.1007/s12265-011-9270-6

H. Lickert, V. Takeuchi, . Both, . Walls, . Mcauliffe et al., Baf60c is essential for function of BAF chromatin remodelling complexes in heart development, Nature, vol.10, issue.7013, pp.107-112, 2004.
DOI : 10.1126/science.1068206

M. Mercola, P. Ruiz-lozano, and M. Schneider, Cardiac muscle regeneration: lessons from development, Genes & Development, vol.25, issue.4, pp.299-309, 2011.
DOI : 10.1101/gad.2018411

D. Medici, E. Shore, . Vy-lounev, R. Fs-kaplan, B. Kalluri et al., Conversion of vascular endothelial cells into multipotent stem-like cells, Nature Medicine, vol.16, issue.12, pp.1400-1406, 2010.
DOI : 10.1038/nm.2252

J. Kelm, . Ehler, . Lk-nielsen, J. Schlatter, M. Perriard et al., Design of Artificial Myocardial Microtissues, Tissue Engineering, vol.10, issue.1-2, pp.201-214, 2004.
DOI : 10.1089/107632704322791853

F. Limana, M. Capogrossi, and A. Germani, The epicardium in cardiac repair: From the stem cell view, Pharmacology & Therapeutics, vol.129, issue.1, pp.82-96, 2011.
DOI : 10.1016/j.pharmthera.2010.09.002

K. Wagner, . Wagner, . Bondke, . Nafz, H. Flemming et al., The Wilms' tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction, The FASEB Journal, vol.16, pp.1117-1119, 2002.
DOI : 10.1096/fj.01-0986fje

K. Wagner, . Wagner, . Wellmann, . Schley, H. Bondke et al., Oxygen-regulated expression of the Wilms' tumor suppressor Wt1 involves hypoxiainducible factor-1 (HIF-1), FASEB J, vol.17, pp.1364-1366, 2003.

Y. Kanemura, . Mori, . Kobayashi, . Islam, . Kodama et al., Evaluation of in vitro proliferative activity of human fetal neural stem/progenitor cells using indirect measurements of viable cells based on cellular metabolic activity, Journal of Neuroscience Research, vol.7, issue.6, pp.869-879, 2002.
DOI : 10.1002/jnr.10377

G. Inman, . Nicolas, . Callahan, . Harling, . Gaster et al., SB-431542 Is a Potent and Specific Inhibitor of Transforming Growth Factor-beta Superfamily Type I Activin Receptor-Like Kinase (ALK) Receptors ALK4, ALK5, and ALK7, Molecular Pharmacology, vol.62, issue.1, pp.65-74, 2002.
DOI : 10.1124/mol.62.1.65

N. Bax, . Van-oorschot, . Maas, . Braun, . Van-tuyn et al., In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGF??-signaling and WT1, Basic Research in Cardiology, vol.135, issue.5, pp.829-847, 2011.
DOI : 10.1007/s00395-011-0181-0

B. Willis and Z. Borok, TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease, AJP: Lung Cellular and Molecular Physiology, vol.293, issue.3, pp.525-534, 2007.
DOI : 10.1152/ajplung.00163.2007

S. Halder, R. Beauchamp, and P. Datta, A Specific Inhibitor of TGF-?? Receptor Kinase, SB-431542, as a Potent Antitumor Agent for Human Cancers, Neoplasia, vol.7, issue.5, pp.509-521, 2005.
DOI : 10.1593/neo.04640

C. Altomare, . Barile, . Marangoni, . Rocchetti, . Alemanni et al., Caffeine-induced Ca2+ signaling as an index of cardiac progenitor cells differentiation, Basic Research in Cardiology, vol.555, issue.4 Suppl, pp.737-749, 2010.
DOI : 10.1007/s00395-010-0111-6

C. Cai, J. Martin, . Sun, . Cui, . Wang et al., A myocardial lineage derives from Tbx18 epicardial cells, Nature, vol.279, issue.7200, pp.104-108, 2008.
DOI : 10.1038/nature06969

B. Zhou, . Ma, . Rajagopal, . Wu, J. Domian et al., Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart, Nature, vol.208, issue.7200, pp.109-113, 2008.
DOI : 10.1038/nature07060

O. Martinez-estrada, L. Lettice, J. Essafi, . Guadix, . Slight et al., Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin, Nature Genetics, vol.25, issue.1, pp.89-93, 2010.
DOI : 10.1126/science.1068206

F. Limana, . Zacheo, . Mocini, . Mangoni, . Borsellino et al., Identification of Myocardial and Vascular Precursor Cells in Human and Mouse Epicardium, Circulation Research, vol.101, issue.12, pp.1255-1265, 2007.
DOI : 10.1161/CIRCRESAHA.107.150755

J. Russell, . Sc-goetsch, J. Gaiano, . Hill, J. Olson et al., A Dynamic Notch Injury Response Activates Epicardium and Contributes to Fibrosis Repair, Circulation Research, vol.108, issue.1, pp.51-59, 2011.
DOI : 10.1161/CIRCRESAHA.110.233262

D. Meglio, F. , C. Castaldo, . Nurzynska, . Romano et al., Epithelial???mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart, Journal of Molecular and Cellular Cardiology, vol.49, issue.5, pp.719-727, 2010.
DOI : 10.1016/j.yjmcc.2010.05.013

A. Blokzijl, . Dahlqvist, . Reissmann, . Falk, U. Moliner et al., Cross-talk between the Notch and TGF-?? signaling pathways mediated by interaction of the Notch intracellular domain with Smad3, The Journal of Cell Biology, vol.124, issue.4, pp.723-728, 2003.
DOI : 10.1073/pnas.111614398

J. Zavadil, N. Cermak, E. Soto-nieves, and . Bottinger, Integration of TGF-??/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition, The EMBO Journal, vol.23, issue.5, pp.1155-1165, 2004.
DOI : 10.1038/sj.emboj.7600069